SimpleBGC32 Serial API protocol

specification
Applicable for all 32-bit gimbal controllers

WV 5asecam

ELECTRONICS

Last updated: Jan 6, 2024

Revision history:

. rev. 0.1 -24.03.2015: this is first revision

. rev. 0.2 — 27.03.2015: add missed data

. rev. 0.3 — 30.04.2015: add missed data in CMD_READ_PARAMS_EXT

. rev. 0.4 — 01.07.2015: extended CMD_CONTROL; add MENU_CMD_LEVEL_ROLL_PITCH; FRAME_ANGLE_XX replaced
by ROTOR_ANGLE_XX in the CMD_REALTIME_DATA_4; updated CMD_AHRS_HELPER.

. rev. 0.5 — 30.07.2015: extended set PROFILE_FLAGS1, GENERAL_FLAGS1; extended set CMD_EXECUTE_MENU;
deprecated FRAME_CAM_ANGLE_XX.

. rev. 0.6 — 12.08.2015: new mode for CMD_CONTROL; new commands CMD_GET_ANGLES_EXT,
CMD_SET_ADJ_VARS_VAL.

. rev. 0.7 — 22.10.2015: new parameters ORDER_OF_AXES, EULER_ORDER; set of PROFILE_FLAGS1,
GENERAL_FLAGS1 extended; SKIP_GYRO_CALIB options extended.

. rev. 0.8 —09.11.2015: CMD_AHRS_HELPER is extended.

. rev. 0.9 — 22.12.2015: new command CMD_GYRO_CORRECTION; new adj. var. FRAME_HEADING_ANLGE and
GYRO_HEADING_CORRECTION; extended GENERAL_FLAGS1 and PROFILE_FLAGS1.

. rev. 0.10 — 13.02.2016: updated CMD_AUTO_PID; extended range of NOTCH_GAIN.

. rev. 0.11 — 07.03.2016: new command CMD_READ_PARAMS_EXT2; new parameter MOTOR_MAG_LINK_FINE; new
command CMD_CALIB_MOTOR_MAG_LINK; ACC_LIMITER split to axes; extended form of CMD_HELPER_DATA.

. rev. 0.12 — 02.04.2016: new commands CMD_DATA_STREAM_INTERVAL, CMD_REALTIME_DATA_CUSTOM.

. rev. 0.13 — 05.06.2016: new command CMD_BEEP_SOUND; new adjustment variables.

. rev. 0.14 — 21.06.2016: CMD_ADJ_VARS_STATE described.

. rev. 0.15 — 09.07.2016: extended CMD_READ_PARAMS_EXT2; extended CFG_FLAGS in CMD_AUTO_PID; new command
CMD_CALIB_INFO; corrected CMD_DATA_STREAM_INTERVAL.

. rev. 0.16 — 10.08.2016: added MavLink parameters in CMD_READ_PARAMS_EXT2.

. rev. 0.17 — 21.10.2016: new commands CMD_CONTROL_CONFIG, CMD_CALIB_ORIENT_CORR; extended
CMD_READ_PARAMS_EXT2.

. rev. 0.18 — 23.03.2017: new parameter FRAME_HEADING in CMD_HELPER_DATA; new flag
CONTROL_FLAG_AUTO_TASK in CMD_CONTROL; new command CMD_CALIB_ACC_EXT_REF; document structure is
updated.

. rev. 0.19 — 08.09.2017: add CMD_EVENT; updated CMD_DATA_STREAM_INTERVAL.

. rev. 0.20 — 10.30.2017: updated parameter EXT_FC_GAIN in CMD_READ_PARAMS _3; updated
CMD_READ_PARAMS_EXT2.

. rev. 0.21 — 10.01.2018: new parameters in CMD_READ_PARAMS_EXT2;

. rev. 0.24 — 29.03.2018: updated CMD_EXECUTE_MENU; add AHRS_DEBUG_INFO and MOTOR4_CONTROL data
structures; extended CMD_REALTIME_DATA_CUSTOM; add CMD_EXT_IMU_DEBUG_INFO; add
CMD_READ_PARAMS_EXT3, CMD_WRITE_PARAMS_EXT3;

. rev. 0.25 — 27.11.2018: add protocol V2 specification.

. rev. 0.26 - 21.03.2019: add command CMD_AUTO_PID2.

. rev. 0.27 — 18.09.2019: add command CMD_EXT_IMU_CMD.

. rev. 0.28 — 31.01.2020: extended CMD_READ_PARAMS_EXT3.

. rev. 0.29 — 01.04.2020: add FLAGS description in CMD_RESET; updated CMD_AHRS_HELPER (extended examples section
and described additional flags).

. rev. 0.30 — 10.09.2020: add CMD_READ_STATE_VARS; new flag in CMD_AHRS_HELPER; added Appendix D.

. rev. 0.31 — 10.11.2019: fixed CMD_READ_PARAMS_EXT;

. rev. 0.32 — 11.10.2021: added command description: CMD_CALIB_COGGING, CMD_CAN_DEVICE_SCAN,
CMD_WRITE_PARAMS_SET

. rev. 0.33 - 02.11.2022: added CMD_EXT_SENS_CMD;

. rev. 0.40 — 13.02.2022: document structure was redesigned and added table of contents

© Basecamelectronics® 2024

SimpleBGC32 Serial API protocol specification

Overview

Serial API allows for an external application or device to communicate with the SimpleBGC controller via
serial port (UART). Each controller has several UART ports that can be used to send or receive Serial API
commands. All models are equipped with the USB port that is visible as Virtual Com Port (VCP) for the host
machine. Depending on controller, USB may be dedicated or shared with the one of UARTSs.

Commands may be used to retrieve actual system state and realtime data, change settings, control gimbal,
trigger pin state, execute various actions, get access to internal EEPROM and 12C bus, and so on. Moreover,
SimpleBGC GUI software uses the same Serial API protocol to communicate with the board, so all of its
functions may be implemented in third-party applications.

Communications is initiated from the remote side (host) by sending outgoing commands. The controller may
do some action and send response (for the host it is an incoming command).

Board can work on different serial baud rates, adjustable by the parameters, with the 115200 as default
value. Host can automatically find the proper baud rate by sending the CMD_BOARD_INFO command in a
loop, altering the speed ant waiting for a response, until valid response is received, or should allow to specify
a baud rate in its settings.

Additionally, board can auto-detect the "parity" parameter. EVEN and NONE parity are supported (NONE is
selected by default after start, and EVEN is detected automatically). It means that beside the baud rates,
host application should vary the parity setting, when connecting through an intermediate layer that can have
this parameter unknown (like Bluetooth modules). For the direct UART or USB VCP connection, it is enough
to set parity to "NONE".

Throughout capacity

The controller parses incoming command queue each 8ms, so there is no reason to send commands of the
same type with the higher rate. Commands of different type may be sent without delay between them. It is
responsibility of the host application to prevent an overflow of the input and output buffers of the controller
(255 bytes each). If new serial data comes when the input buffer is full, the whole message will be lost. If
controller has to generate an answer that does not fit into the output buffer, it hangs until buffer will have
enough space to accept new data. It may negatively affect the normal operation and even make whole
system unstable. The only exception is the CMD_REALTIME_DATA xx and several others, that are
considered as non-obligatory for delivery.

You can calculate the safe rates according to the size of incoming and outgoing commands and the
configured baud rate for the serial port. Take into account the bandwidth and the buffering strategy of the
intermediate transmission layer. For example, BLE modules have a very limited bandwidth and small buffers.
Also, almost all radio modems have effective transmission rate less then 100Kbit/s in optimal conditions.

Debugging

You can configure SimpleBGC32 GUI to display all incoming and outgoing commands that it receives/sends.
To do it, run it in a "console" mode using the "run_console.bat" script. Commands will be displayed in the
"Debug" tab in format:

<local_time> <direction>: [<command_id>,<payload_length>] <payload_data_hex>
Note that several commands with high rate are not displayed (like CMD_REALTIME_DATA_xx).

Starting from the firmware and GUI version 2.66b4, it's possible to monitor all serial APl messages on all
other ports, by connecting GUI to any available serial port, configured for the SBGC Serial APl mode, and
enabling the "Debug" — "Set as debug port" option for it. Controller will forward all incoming and outgoing
Serial APl commands from all other ports to this port. Commands will be displayed in the "Debug" tab in
format:

ﬁ‘ © Basecamelectronics® 2024 2

Overview SimpleBGC32 Serial API protocol specification

<MCU_time> port<idx>.<direction>: [<command_id>,<payload_length>] <payload_data_hex>

In this case, the "in" direction means "to the board", "out" — "from the board".
Note, that only the successfully parsed commands are forwarded. All unknown data is ignored.

Message format

Each command consists of the header and the body, both with checksum. Commands with the wrong header
or body checksum, or with the body size that differs from expected, should be ignored. Parser should scan
incoming datastream for the next start character and try to restore synchronization from it.

Input and output commands have the same format.

Protocol version 1

header body
start command payload header payload payload
character ID, size checksum variable size N checksum
> (0x3E) 0..255 N=0..255
0 1 2 3 4| o [N 4

Header checksum is calculated as (command ID + payload_size) modulo 256.
Payload checksum is calculated as the sum of all payload bytes modulo 256.

Operation "modulo" means least significant byte of the sum.

Example: outgoing command to read Profile2:

header body
0 1 2 3 4 5
| OE | ox52 | 0x01 | Ox53 | Ox01 | 0x01 |

Protocol version 2

Starting from firmware version 2.68b0, firmware additionally supports protocol version 2, that has better error
rejection by replacing the old 8 bit simple checksum (over payload only) to CRC16 checksum (over header +
payload).

header payload crc
start command payload header variable size N CRC16
character ID, size checksum (header + payload)
$ (0x24) 0..255 N=0..255
0 1 2 3 AN 4N | 4N

Compared to version 1, it has a different start character "$" and a different checksum calculation:
payload checksum is calculated as a CRC16 over the header bytes and payload bytes, starting from index 1
to index 4+N-1. A reference implementation of CRC16 using polynomial 0x8005 is given in the Appendix A.

Protocol version 2 locking

At startup, firmware supports messages in both versions 1 and 2. But when the first valid message version 2
is received, this version is locked and all incoming messages in version 1 are not recognized anymore.

“ © Basecamelectronics® 2024 3

SimpleBGC32 Serial API protocol specification

Data type notation

1u — 1 byte unsigned

1s — 1 byte signed

2u — 2 byte unsigned (little-endian order)

2s — 2 byte signed (little-endian order)

4f — float (IEEE-754 standard)

4s — 4 bytes signed (little-endian order)

string — ASCII character array, first byte is array size

Nb — byte array size N

Many parameters are grouped in arrays, that is indicated by the square brackets notation: "ANGLE[3]".
Parameters that are split into axes, always go in the order ROLL, PITCH, YAW for the Euler angles and
corresponding motors in a normal position. For the vectors order is X, Y, Z in the coordinate system having X
pointing right, Y — forward, Z — up.

NOTE: order of parameters in arrays is always ROLL,PITCH,YAW, but it doesn't corresponds to the order of Euler angles
used to express a rotation — it is variable and defined by the parameter 'EULER_ORDER'.

*‘ © Basecamelectronics® 2024

SimpleBGC32 Serial API protocol specification

Table of contents

Overview 2
TITOUGNOUL CAPACITY . veerrierereeeeeeieriesesiseissessse st sssssessssesssssssessse s s sssesssssssessssssssasssessssssssesssesssassssssasesasesssessssssssssssessssssssssssensans 2
Debugging w2
Message format .53
DAt LY P NOTATION....ceceeeeetcee ettt ssssss s st s s s s s s s s b s e s A e a b s R b A e s s s s ban s s b e en s sas 4

Table of contents 5
Device information 9

REGUESTES....oo ettt as s ssss s s s sss s s s s ssssessssssessssssss s s s e ssssssesssesssasessnssssssesasessessnessnssnesssssessssssessnsssssssessssassnssnssssessns 9
CMD_BOARD_INFO (#86) - request board and firmware informMation.........ceeecuecesessecmsesescssessessesssenns 9
CMD_BOARD_INFO_3 (#20) - request additional board iNfOrmation..........nrinnennsenssnssenssesssssssssssssssssnes 9

RESPONSES ...ttt as s bbb e bbb s s e bR AR e RS R RS AR bR e bR AR e b as R b e bR b e b n e 9
CMD_BOARD_INFO (#86) — version and board infOrmMation..........eecueeeeiecseeessessssessssssssssssssesssessssssesssesns 9
CMD_BOARD_INFO_3 (#20) - additional board informMation.......c..cnseeneenneesseieeeseessessesssesssssssssssssssssssssssens 10

Configuring gimbal 12

Requests 12

CMD_READ_PARAMS (#82),

CMD_READ_PARAMS 3 (#21) - request parameters from the board

CMD_READ_PARAMS _EXT (#33) - request extended parameters partl

CMD_READ_PARAMS_EXT2 (#62) - request extended parameters part2

CMD_READ_PARAMS_EXT3 (#104) - request extended parameters part3 12
CMD_WRITE_PARAMS (#87),

CMD_WRITE_PARAMS 3 (#22) - write parameters to board and saves to EEPROM
CMD_WRITE_PARAMS_EXT (#34) - write extended parameters partl

CMD_WRITE_PARAMS _EXT2 (#63) - write extended parameters part2

CMD_WRITE_PARAMS _EXT3 (#105) - write extended parameters Part3eennsesseesssessessssssssssssens 12
CMD_WRITE_PARAMS SET (#119) - start or end of the writing parameters SEQUENCEccocovecuneeermeeeeeennenens 12
CMD_USE_DEFAULTS (#70) - reset to factory defaults .12
CMD_CALIB_OFFSET (#79)— calibrate fOLLOW OffSEL.....vrerinerrereesiesssssis s sisssssssasssesssssssssssssssssssssssssssssssssssssesses 13
CMD_READ_PROFILE_NAMES (#28) - Request profile names stored in EEPROM.........ccocovmnnennecnnceneensenneens 13
CMD_WRITE_PROFILE_NAMES (#29) - Writes profile names to EEPROM ... 13
CMD_PROFILE_SET (#95) = Manage Profile SEIScereireciseeieeesetiseeiseesesssesiseessesssessssssssesssesssessssssssesssessssssssssssens 13
Responses 13
CMD_READ_PARAMS 3 (#21) — read/write system configuration Part L.....ensnnenssssnssssessssssssessnnns 13
CMD_READ_PARAMS_EXT (#33) - read/write system configuration Part Z........cneenecneeeneeecssesscsscnnens 18
CMD_READ_PARAMS_EXT2 (#62) - read/write system configuration part 3 .20
CMD_READ_PARAMS EXT3 (#104) - read/write system configuration part 3ennenssnssenssensenees 23
CMD_READ_PROFILE_NAMES (#28) - receive profile names from EEPROM..........rmonereerrre s 24
Calibrating 26
Requests 26

CMD_CALIB_ACC (#65) — calibrate accelerometer
CMD_CALIB_GYRO (#103) - calibrate gyroscope

CMD_CALIB_MAG (#59) - calibrate magnetometer .26
CMD_CALIB_EXT_GAIN (#71) - calibrate EXT_FC gains 26
CMD_CALIB_POLES (#80) — calibrate poles and dir€CLiON.......eerverenrereerssesessssrsesssssssssssssssssssssssssssssssssssssessssssssesans 26
CMD_CALIB_BAT (#66) - calibrate internal voltage sensor .26
CMD_ENCODERS_CALIB_OFFSET_4 (#26) - calibrate offset 0f @NCOdErs.......nrererrererresrereesseseesssseeseesennens 26
CMD_ENCODERS_CALIB_FLD_OFFSET_4 (#27) - start field offset calibration of encoders.......ccoueconecreeencunee 27

CMD_CALIB_ORIENT_CORR (#91) - start the calibration of sensor misalignment correction (frw. ver.

ﬁ‘ © Basecamelectronics® 2024 5

SimpleBGC32 Serial API protocol specification

2014 ettt st s RS RR RS S RS S R S £ R R R AR RERERAe R R RS e Rt R et es 27
CMD_CALIB_ACC_EXT_REF (#94) - refine the accelerometer calibration of the main IMU sensor 27
CMD_CALIB_COGGING (#93) - starts the motor non-Llinearities calibration....... o necnseenneenneeneeseeneens 28
CMD_SYNC_MOTORS (#123) - mechanically align motors working in parallel for a single axis.......cccecu.... 28
Real-time state monitoring and diagnoOStiCs.......ce.eeereeeeeceeecoeecoeecoeecseecseecseecseessesseseeseessecssescese 30
Requests 30
CMD_REALTIME_DATA_CUSTOM (#88) - request configurable realtime data .30
CMD_REALTIME_DATA (#68),
CMD_REALTIME_DATA_3 (#23) - request real-time data, response is CMD_REALTIME_DATA 3......ccccee. 30

CMD_REALTIME_DATA 4 (#25) - request extended real-time data, response is CMD_REALTIME_DATA 4 30

CMD_DATA_STREAM_INTERVAL (#85) - register or update data stream - a commands sent by the
controller with the fixed rate without request

CMD_READ_RC_INPUTS (#100) - read values for the selected RC inputs

CMD_GET_ANGLES (#73), CMD_GET_ANGLES _EXT (#61) - Request information related to IMU angles and

RC control state

CMD_SELECT_IMU_3 (#24) - Select which IMU to calibrate or send realtime data

CMD_DEBUG_VARS _INFO_3 (#253) - request information about debug variables

CMD_DEBUG_VARS_3 (#254) - request values of debug variables

CMD_CALIB_INFO (#49) - request information required for the "Calibration helper” dialog window.....

CMD_READ_STATE_VARS (#111)- request reading system persistent state variables, cumulative statistics

and maintenance data .33
CMD_WRITE_STATE_VARS (#112) - write system persistent state variables, cumulative statistics and
MAINTENANCE AATA....e ettt st ss s s s s s sss s sasessessse s s sasessasssesesessesasessesasesessssessesssassssssesssessesasesssenas 33
CMD_SET_DEBUG_PORT (#249) - use this port for debugging........cccuomneeenmeeoneeseienseeseeseesssesssssssssssssssssssssssssssssens 33
Responses 33
CMD_REALTIME_DATA_CUSTOM (#88) — configurable realtime data........cooeneeenneeneeseceseeseeseeessessessessesseens 33
CMD_REALTIME_DATA 3 (#23) - receive real-time data. ... rneenneenressinsissesssens 35
CMD_REALTIME_DATA _4 (#25) - receive extended version of real-time datacoecneennrenneenecneenecncnens 37
CMD_GET_ANGLES (#73) - Information about actual gimbal cONTrol State.......c.cormeerrrecsecereeereeeseesenreeseeseaseane 38
CMD_GET_ANGLES_EXT (#61) - Information about angles in different format......ocnsenseenneconecenecncnens 38
CMD_DEBUG_VARS_INFO_3 (#253) - receive a specification of the debug variables 38
CMD_DEBUG_VARS 3 (#254) - values of debug variables reflecting a state of the system.......ccccooeeevrvernnnne 39
CMD_CALIB_INFO (#49) - receive information required for the "Calibration helper” dialog window............ 39
CMD_SCRIPT_DEBUG (#58) — state of execution of USer-written SCriPL ...reeernernersesnsssesesssseesssssessessssnens 40
CMD_ADJ_VARS _STATE (#46) - receive the state of adjustable variables....... s 40
CMD_READ_RC_INPUTS (#100) - answer to the requested RC SOUICES......covererreneernensesssesssssssssssessssssssessssssnens 40
CMD_READ_STATE_VARS (#111) - result of reading system persistent state variables, cumulative
statistics and maintenance data 41
CMD_SET _DEBUG_PORT (#249) - receive serial API commands from all other ports for a debugging......... 41
Run-time gimbal parameters 42
Requests 42
CMD_SET_ADJ_VARS_VAL (#31) - Update the value of selected parameter(s)........oueeerreerecureeurerneereeseeseeneens 42
CMD_GET_ADJ_VARS_VAL (#64) - Query the actual value of selected parameter(s).......coereerreereersesresernens 42
CMD_READ_ADJ_VARS CFG (#43) - request configuration of mapping of control inputs to adjustable
VATTADLES .ottt sse s sase s st s e e eSS e 42
CMD_WRITE_ADJ_VARS_CFG (#44) - writes configuration of mapping of control inputs to adjustable
VATTADLES. c.ovveeerceecieeceese et ceseeess s sessesessesessssesssesass s b bss R RS £RAR AR ARERRARReRARe 43
CMD_SAVE_PARAMS 3 (#32) - Saves current values of parameters linked to adjustable variables, to
EEPROM .43
CMD_ADJ_VARS_STATE (#46) - request the state of adjustable variable in the given trigger and analog
SLOTS. ettt bbb bR RS R AR R R R bbbt 43
6

ﬁ‘ © Basecamelectronics® 2024

SimpleBGC32 Serial API protocol specification

Responses 43
CMD_SET_ADJ_VARS_VAL (#31) - receive the values of adjustable variables.oneonncneneeneeneneens 43
CMD_READ_ADJ_VARS_CFG (#43) - receive the configuration for adjustable variables.......cccccoeomrerrrrrerrnnnee. 43

IMU correction and diagnostic 45

Requests 45
CMD_HELPER_DATA (#72) - provide helper data for AHRS SYSTEM.....coirenneereirecseesecsecisseisesssecesseieseseeaeens 45
CMD_AHRS_HELPER (#56) - send or request attitude of the IMU sensor. .47
CMD_GYRO_CORRECTION (#75) - correct the gyroscope sensor's zero bias manually.......eeenecerneenes 49

Responses 49
CMD_AHRS HELPER (#56) - current attitude in vector form. .49
AHRS _DEBUG_INFO - information about the AHRS STALE ...ttt sssssssesssssnes 49
CMD_EXT_IMU_DEBUG_INFO (#106) - debug information for the external IMU SENSOrccceeorrrereerreeneernnne 50

Controlling gimbal movements 51

Requests 51
CMD_CONTROL (#67) — controls gimbal MOVEMENT.........cerieeeerrseisessstssssstssessssasseses 51
CMD_CONTROL_EXT (#121) - controls gimbal movement, extended VErSioNeenseenneesecesscnsennens 54
CMD_CONTROL_CONFIG (#90) - configure the handling of CMD_CONTROL command 55
CMD_API_VIRT_CH_CONTROL (#45) - update a state of 32 virtual channels........ s 56
CMD_API_VIRT_CH_HIGH_RES (#116) - update a state of 32 virtual channelsncnencenenenn. 56

Miscellaneous commands 58

Requests 58
CMD _RESET (#114) — rESEL UBVICEuuiiirrirrrersetrssissesssessasssssssssssssssssssssssssssssssssssssssessasssses 58
CMD_BOOT_MODE_3 (#51) - enter bootloader mode to upload firMWare......coeenneesecesecenseeseeseseeseesesseens 58
CMD_TRIGGER_PIN (#84) - trigQer OULPUL PiN.uuucueceereesecesseeeesessssesssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssesssssssssssssssens 58
CMD_MOTORS_ON (#77) - switch motors ON ..59
CMD_MOTORS_OFF (#109) - SWItCh MOLOrS OFF.......coeerieeeeseeeseeiseeiseseesesssessesesesssssssssssssssssssssssssssssesssssssssssssssessnes 59
CMD_EXECUTE_MENU (#69) - execute MenU COMMANG......cccewrrerurreensrnsersssnsesssnsssesssssseses 59
CMD_AUTO_PID (#35) - Starts automatic PID calibration 60
CMD_AUTO _PID2 (#108) — Starts automatic PID calibration VEr. 2. reesensisssssesssesssssssssssssssssssssssssenens 61
CMD_SERVO_OUT (#36) - Output PWM signal on the servol..4 pins .62
CMD_I12C_WRITE_REG_BUF (#39) — writes data to any device connected t0 12C LiN€...eeeorerneneereserenenene 62
CMD_I2C_READ_REG_BUF (#40) - requests reading from any device connected to 12C lin€......ccouecoreeerreeenee 63
CMD_RUN_SCRIPT (#57) — start or StOP USEr-WIIttEN SCHPT....rerrerrereereeseessessssssssssssssssesssssssssssssssssssssssssssssssssssens 63
CMD_BEEP_SOUND (#89) - play melody by motors or emit standard beep sound .63
CMD_SIGN_MESSAGE (#50) - sign message by secret keys 64
CMD_EXT_IMU_CMD (#110) - forward message from the controller to the connected external IMU sensor

............... 64
CMD_EXT_SENS_CMD (#150) - forward message to the GPS_IMU SENSON.........coreomrenneenneenneesesesseeseeseessesssseens 64
CMD_CAN_DEVICE_SCAN (#96) - scan for the connected CAN devices .65

Responses 65
CMD_CONFIRM (#67) - confirmation of previous command or finished calibration 65
CMD_ERROR (#255) - error executing previous command 65
CMD_I2C_READ_REG_BUF (#40) - result of reading from 12C deViCe.......couenrrennreneeereeeseesessssesssssssssssssssssens 65
CMD_AUTO _PID (#35) — progress of PID QULO tUNING...c.ccceeerrerierirnenstsssensissenssessssssessssesssses 66
CMD_RESET (#114) = NOtifiCation ON AEVICE FESET......ireeeeeeieesecieeiseesesssssisseesesssessssssssssssessssssssssssssssessssssssssssasesseas 66
MOTOR4_CONTROL - provides data for the external controller of the 4th axis Motoreecvecrennnee. 66
CMD_EVENT (#102) — sent when event iS trIgQEred ... enecneeinseeseeseceseeseessesssessssssssesssassssssssesssessssssssssssens 66
CMD_SIGN_MESSAGE (#50) — result of MeSSAge SigNING.....erereenrensinsessesens 67
CMD_EXT_IMU_CMD (#110) - forwarded message received from the connected external IMU sensor........67
CMD_EXT_SENS_CMD (#150) - forward message from the GPS_IMU SENSOI.......crrenrennenssseesssnsesssnessenenns 68

CMD_CAN_DEVICE_SCAN (#96) - result of scanning all connected CAN devices, with the ID assigned to

ﬁ‘ © Basecamelectronics® 2024 7

SimpleBGC32 Serial API protocol specification

them ..68
EEPROM and internal file system 69
Requests 69
CMD_READ FILE (#53) — read file from internal fileSYSTEM ...ttt ceseessetasesissee et seens 69
CMD_WRITE_FILE (#54) - write file to internal fileSYSTEM.. ...t esssessss st sss s s sasssssassasens 69
CMD_FS_CLEAR_ALL (#55) - delete all files from internal fileSySteM... et 70
CMD_EEPROM_WRITE (#47) - writes a block of data to EEPROM to specified address 70
CMD_READ _EXTERNAL_DATA (#42) - receive user data, stored in the EEPROM..........rvrecnrecnenenecinennns 70
CMD_EEPROM_READ (#48) - request a reading of block of data from EEPROM at the specified address
and size 70
CMD_WRITE_EXTERNAL_DATA (#41) - stores any user data to the dedicated area in the EEPROM.............. 70
CMD_READ_EXTERNAL_DATA (#42) - request user data, stored in the EEPROM 70
Responses 71
CMD_READ FILE (#53) - result of reading file from internal filesystem .71
CMD_EEPROM_READ (#48) - receive a portion of data read from EEPROM at the specified address. 71
Appendix 72
COMMEANG ID AEFINITIONS ...t sssessssssessansssnssnsssssssssssssnssassnes 72
AppPeNndixX A: EXAMPLES @Nd LIDFAriES. . et sesisssesstsssssstssessesssses 74
CRC16 reference implementation in C 74
Appendix B: Run-time parameters definition (adjustable variables) w75
Appendix C: Providing external reference attitude/heading information from UAV........nneinenecneenscnnennee 78
Using high-grade IMU fOr @ COMTEOLION...... sttt s sssanes 78
Notes on data rates and how to interrupt the correction 78
Appendix D: Coordinate SYSTEM CONVEISIONS.......c.owrreerrereerreereesssssessesssses 79
ROTATION MALTIX.e1rterrrerrerrersrriesrisssssssssssssssssesssessssssssasssssssssssssssssssssssssssssessnesssssssssssssssssssssssssssessssnssnnes 79
QUATEINIONS. e s s sassss s sassassassassassas s s s s sasbas s e b e b e as s e s es b e s b A b e s e bas b A b e b e b e b as b b e b e b as s s b s basbassessesasassebasassesanes 79
BULEE @NGLES ittt sasssssse s ssss s s s s s s s s s s s s s s s e s R s A AR A e R Rt R R b st ee 79
Appendix E: “EMEIrGENCY SLOP” EITOI COUES......vurrrrrirreersseessssesessssesessssssessssssessssssessssssesssssessssasessssssessssssessssssessssssessssssssasssans 80

'ﬁ‘ © Basecamelectronics® 2024 8

Device information

SimpleBGC32 Serial API protocol specification

Device information

Requests

CMD_BOARD_INFO (#86) - request board and firmware information

Simple format: no parameters

Extended format:

Name Type Min Max Possible values, remarks
CFG 2b configuration for this serial driver:
» for UARTs — period (in ms) between 20-bytes
packets for BLE mode
» for USB — not used
RESERVED ? size is not checked

CMD_BOARD_INFO_3 (#20) - request additional board information

No parameters

Responses

CMD_BOARD_INFO (#86) - version and board information

Name Type Min Max Possible values, remarks

BOARD_VER 1u Multiplied by 10: 3.0 => 30

FIRMWARE_VER 2u Split into decimal digits X.XX.X, for example 2305 means
2.30b5
major_ver = (int)(FIRMWARE_VER/1000);
minor_ver = (int)((FIRMWARE_VER%1000)/10);
beta_ver = FIRMWARE_VER%10;

STATE_FLAGS1 1u bit@: DEBUG_MODE - internal use only

Starting from frw.ver. 2.66:
bitl: IS_FRAME_INVERTED - system is re-configured for
frame inversion over the middle motor;

The following flags are set at the system initialization:

bit2: INIT_STEP1_DONE - finished initialization of all basic
sensors, frame inversion configuration is applied;

bit3: INIT_STEP2_DONE - finished initialization of the RC
subsystem, adjustable variables, etc. Automated positioning is
started;

bit4: STARTUP_AUTO_ROUTINE_DONE - positioning and
calibrations at startup is finished;

‘,‘ © Basecamelectronics® 2024

Device information

SimpleBGC32 Serial API protocol specification

BOARD_FEATURES 2u Bit set to encode functions firmware supports:
BAT_MONITORING = (1<<1)
3AXIS = (1<<0)
ENCODERS = (1<<2)
BODE_TEST = (1<<3)
SCRIPTING = (1<<4)
CURRENT_SENSOR = (1<<5)
MAG_SENSOR = (1<<6)
ORDER_OF_AXES_LETUS = (1<<7)
IMU_EEPROM = (1<<8)
FRAME_IMU EEPROM = (1<<9)
CAN_PORT = (1<<10)
MOMENTUM = (1<<11)
COGGING_CORRECTION = (1<<12)
MOTOR4_CONTROL = (1<<13)
ACC_AUTO_CALIB = (1<<14)
BIG_FLASH = (1<<15) - firmware needs 256Kb of FLASH
CONNECTION_FLAG 1u Bit set:
CONNECTION_USB = 1
FRW_EXTRA_ID 4u Used for specific builds only
BOARD_FEATURES_EXT |2u Extends the set of BOARD_FEATURES to 16..31 bit:
EXT_IMU = (1<<16)
STATE_VARS = (1<<18)
POWER_MANAGEMENT = (1<<19)
GYRO_ADVANCED_CALIB = (1<<20)
LIMITED_VERSION = (1<<21)
REACTION = (1<<22)
ENCODER_LUT = (1<<23)
RESERVED 3b
BASE_FRW_VER 2u For “experimental” versions encodes the main version which
they are based on

CMD_BOARD_INFO_3 (#20) - additional board information

Name Type Min Max Possible values, remarks

DEVICE_ID 9b Unique Id used to identify each controller in licensing system

MCU_ID 12b MCU ID, unique

EEPROM_SIZE 4u Size of available EEPROM in current device. Generally 32K
bytes

SCRIPT_SLOT1_SIZE 2u*5 size of user-written scripts stored in five slots, O if slot is empty.

SCRIPT SLOT5_SIZE

PROFILE_SET_SLOTS 1u bit0..bit5: bit is set if the corresponding profile set is not empty.
bit0 for profile set#1, bit2 for profile set#2, bit5 for profile set
backup

PROFILE_SET_CUR 1u 1 A number of currently selected profile set

FLASH_SIZE 1u Actual FLASH memory size (a number of 32 Kb pages)

IMU_CALIB_INFO 2b

2024 10

“ © Basecamelectronics®

SimpleBGC32 Serial API protocol specification

SCRIPT_SLOT6_SIZE 2u*5 size of user-written scripts stored in five additional slots, O if slot

is empty.
SCRIPT_SLOT10_SIZE

HW_FLAGS 2u Board hardware configuration
Bit0: one-wire crypto IC is installed

RESERVED 17b

'ﬁ‘ © Basecamelectronics® 2024 11

Configuring gimbal SimpleBGC32 Serial API protocol specification

Configuring gimbal

Requests

CMD_READ_PARAMS (#82),

CMD_READ_PARAMS_3 (#21) - request parameters from the board
CMD_READ_PARAMS_EXT (#33) - request extended parameters partl
CMD_READ_PARAMS_EXT2 (#62) - request extended parameters part2
CMD_READ_PARAMS_EXT3 (#104) - request extended parameters part3

(frw.ver. 2.66+)

Type Min Max Possible values, remarks
PROFILE_ID u |0 4 profile ID to load. If value >4, currently selected profile is
loaded.

CMD_WRITE_PARAMS (#87),

CMD_WRITE_PARAMS 3 (#22) - write parameters to board and saves to EEPROM
CMD_WRITE_PARAMS_EXT (#34) - write extended parameters partl
CMD_WRITE_PARAMS_EXT2 (#63) - write extended parameters part2
CMD_WRITE_PARAMS_EXT3 (#105) - write extended parameters part3

(frw.ver. 2.66+)

Data structure is the same as for the corresponding CMD_READ_PARAMS_xx incoming command.

On success, confirmation CMD_CONFIRM is sent in response and new values are applied. Some changes
require system to be restarted, so full reset occurs in 1 second after this command, if there are no other
CMD_WRITE_PARAMSxx have came in that time. It's recommended to send these commands in the
“configuration” mode, activated by the CMD WRITE PARAMS SET.

CMD_WRITE_PARAMS_SET (#119) - start or end of the writing parameters sequence
(frw.ver. 2.70b4+)

Send this command before sending the sequence of CMD_WRITE_PARAMSXxx to enter the “configuration”
mode, and send it again at the end of the sequence to apply changes and switch to a normal working mode.
In the configuration state motors are turned OFF and system does not try to make initialization after each
CMD_WRITE_PARAMSXxx.

Type Min Max Possible values, remarks

ACTION 1u 1 — start writing parameters
0 — finish writing parameters

On success, confirmation CMD_CONFIRM is sent in response with the DATA=ACTION.

CMD_USE_DEFAULTS (#70) - reset to factory defaults

Name Type Min Max Possible values, remarks

',‘ © Basecamelectronics® 2024 12

Configuring gimbal SimpleBGC32 Serial API protocol specification

PROFILE_ID 1u 0 4 profile ID to reset. Special values:
253 — erase EEPROM
254 — reset currently selected profile

CMD_CALIB_OFFSET (#79)- calibrate follow offset

No parameters

CMD_READ_PROFILE_NAMES (#28) - Request profile names stored in EEPROM

No parameters

CMD_WRITE_PROFILE_NAMES (#29) - Writes profile names to EEPROM

Type Min Max Possible values, remarks
PROFILE_NAME[5] 48b* Each name is encoded in UTF-8 format and padded with "\0'
5 character to 48 byte size

CMD_PROFILE_SET (#95) - manage profile sets
(frw. ver. 2.65+)

Name Type Min Max Possible values, remarks
SLOT 1u 1 6 Slot to operate. 1..5: regular slots, 6 — backup slot
ACTION 1u PROFILE_SET_ACTION_SAVE =1

save current configuration (including all profiles and simple
calibrations) to the given slot

PROFILE_SET_ACTION_CLEAR =2
cleat the selected slot

PROFILE_SET_ACTION_LOAD =3
load configuration from the given slot

RESERVED 8b

Confirmation is sent on success.

Responses

CMD_READ_PARAMS 3 (#21) - read/write system configuration part 1

Receive parameters for a single profile.

Name Type Min Max Possible values, remarks
PROFILE_ID 1u profile ID to read or write. To access current (active) profile,
specify 255. Possible values: 0..4
P u |0 255
| 1u 0 255 divided by 100 when displayed in the GUI
D u |0 255

',‘ © Basecamelectronics® 2024 13

SimpleBGC32 Serial API protocol specification

POWER 1u 255
INVERT 1u 1
< |POLES 1u 255
ALICC_LIMITER_ALL 1u 0 255 Units: 5 degrees/sec? 0 — disabled.
x (starting from ver. 2.60 is deprecated; replaced by the
ACC_LIMITER3)
EXT_FC_GAIN[2] 1s*2 |-127 127
RC_MIN_ANGLE 2s -720 720 Units: degrees
RC_MAX_ANGLE 2s |-720 720 Units: degrees
RC_MODE 1u 0..2 bits - mode:
RC_MODE_ANGLE = ©
RC_MODE_SPEED = 1
6:‘ 3rd bit - control is inverted, if set to 1
I \RC_LPF 1u 0 15 *Range depends on the flag “Extend LPF range” in GUI/
2 (255)* | settings
©
RC_SPEED u |0 255
RC_FOLLOW 1u -127 127 ROLL, PITCH: this value specify follow rate for
flight controller.
YAW: if value != 0, “follow motor” mode is
enabled.
GYRO_TRUST u |0 255
USE_MODEL u |0 1
PWM_FREQ 1u PWM_FREQ LOW = ©
PWM_FREQ HIGH = 1
PWM_FREQ ULTRA_HIGH = 2
SERIAL_SPPED 1u Baud rate for the main UART1 port (where USB normally
connects)
115200 = ©
57600 = 1
38400 = 2
19200 = 3
9600 = 4
256000 = 5
RC_TRIM[3] 1s*3 |-127 127
RC_DEADBAND u |0 255
RC_EXPO_RATE u |0 100
RC_VIRT_MODE 1u The mode of the RC_ROLL input pin operation:
RC_VIRT_MODE_NORMAL = @
RC_VIRT_MODE_CPPM = 1
RC_VIRT_MODE_SBUS = 2
RC_VIRT_MODE_SPEKTRUM = 3
RC_VIRT_MODE_API = 10
RC_MAP_ROLL 1u*6 Assign input as a signal source. Bits 0..4 for channel number,
RC_MAP_PITCH bits 5..7 for a type. Value 0 means that input is not assigned.
ﬁ‘ © Basecamelectronics® 2024 14

SimpleBGC32 Serial API protocol specification

RC_MAP_YAW
RC MAP CMD PWM source
RC_MAP_FC ROLL RC_INPUT_ROLL =1
T AAD e RC_INPUT_PITCH = 2
RC_MAP_FC_PITCH EXT_FC_INPUT_ROLL = 3
EXT_FC_INPUT_PITCH = 4
RC_INPUT_YAW = 5
Analog source
Channel = 1..3, type = 32 (5" bit is set)
ADC1 = 33
ADC2 = 34
ADC3 = 35
RC Serial source (CPPM/SBUS/SPEKTRUM):
Virtual channel (1..31), type = 64 (6" bit is set)
API Virtual control source
Virtual channel (1..31), type = 128 (7" bit is set)
Step signal source (ver. 2.66+)
Step signal channel 1..6, type = 160 (5" and 7" bits are set)
RC_MIX_FC_ROLL 1u Mix the value received from the FC channel, to the value
RC_MIX_FC_PITCH 1u received from the selected RC channels, with the given rate:
bits 0..5: mix rate. For example,
© - no mix (100% RC)
32 - 50% RC, 50% FC,
63 - 0% RC, 100% FC
bits 6,7: target RC channel
© - no mix
1 - ROLL
2 - PITCH
3 - YAW
FOLLOW_MODE 1u FOLLOW_MODE_DISABLED=0
FOLLOW_MODE_FC=1
FOLLOW_MODE_PITCH=2
FOLLOW_DEADBAND 1u |0 255
FOLLOW_EXPO_RATE u |0 100
FOLLOW_OFFSET[3] 1s*3 [-127 127 Starting from frw. ver. 2.70+ replaced by the
FOLLOW_OFFSET_EXTI[3]
AXIS_TOP 1s Main IMU and frame IMU orientation:
AXIS_RIGHT 1s X=1
FRAME_AXIS_TOP 1s Y =2
FRAME_AXIS_RIGHT 1s fx=_3_1
-Y = -2
-Z = -3
FRAME_IMU_POS 1u Location of the frame IMU:
FRAME_IMU_DISABLED = ©
FRAME_IMU BELOW_YAW = 1
FRAME_IMU_ABOVE_YAW = 2
FRAME_IMU_BELOW_YAW_PID_SOURCE = 3
GYRO_DEADBAND u |0 255 Units: 0.1 of gyro sensor's units.
GYRO_SENS 1u deprecated

'ﬁ‘ © Basecamelectronics® 2024

15

SimpleBGC32 Serial API protocol specification

'ﬁ‘ © Basecamelectronics®

I2C_SPEED_FAST u |0 1 If set, use 800kHz ultra-fast speed mode, otherwise use
400kHz speed
SKIP_GYRO_CALIB 1u Skip calibration of gyroscope.
@ - do not skip
1 - skip always
2 - try to calibrate but skip if motion is detected
RC_CMD_LOW 1u*9 Assign action to various event sources. See
RC_CMD_MID CMD_EXECUTE_MENU for available actions
RC_CMD_HIGH
MENU_BTN_CMD_1
MENU_BTN_CMD_2
MENU_BTN_CMD_3
MENU_BTN_CMD_4
MENU_BTN_CMD_5
MENU_BTN_CMD_LONG
MOTOR_OUTPUTI[3] 1u*3 Motor output mapping
DISABLED = ©
ROLL = 1
PITCH = 2
YAW = 3
I2C_DRV#1 = 4
I2C_DRV#2 = 5
I2C_DRV#3 = 6
I2C_DRV#4 = 7
BAT_THRESHOLD_ALARM 2s |-3000 |3000 Negative means means alarm is disabled
Units: 0.01V
BAT_THRESHOLD_MOTOR |2s |-3000 |3000 Negative value means function is disabled
S Units: 0.01V
BAT_COMP_REF 2s -3000 |3000 Negative value means compensation is disabled.
Units: 0.01V
BEEPER_MODES 1u BEEPER_MODE_CALIBRATE=1
BEEPER_MODE_CONFIRM=2
BEEPER_MODE_ERROR=4
BEEPER_MODE_ALARM=8
BEEP_BY_MOTORS=128
(if this flag is set, motors emit sound instead of internal buzzer)
FOLLOW_ROLL_MIX_STAR |1u |0 90
T
FOLLOW_ROLL_MIX_RAN |1u |0 90
GE
BOOSTER_POWER[3] 1u*3 |0 255 Additional power to correct lost synchronization
FOLLOW_SPEEDI3] 1u*3 |0 255
FRAME_ANGLE_FROM_M |1u |0 1
OTORS
RC_MEMORY][3] 2s*3 |-36767 | 32767 | Initial angle that is set at system start-up, in 14bit resolution
Units: 0,02197265625 degree
SERVO1_OUT 1u*4 Disabled = 0
2024 16

SimpleBGC32 Serial API protocol specification

SERVO2_OUT
SERVO3_OUT
SERVO4_OUT

1..32 - Virtual channel number as source of data to be output

SERVO_RATE

1u

40

PWM frequency, 10 Hz per unit.

ADAPTIVE_PID_ENABLED

Set of bits (@ - disable all):
EN_ROLL =1

EN_PITCH = 2

EN_YAW = 4

ADAPTIVE_PID_THRESHO
LD

255

ADAPTIVE_PID_RATE

255

ADAPTIVE_PID_RECOVER
Y_FACTOR

10

FOLLOW_LPF[3]

1u*3

15

GENERAL_FLAGS1

2u

REMEMBER_LAST_USED_PROFILE = (1<<0)
UPSIDE_DOWN_AUTO = (1<<1)
SWAP_FRAME_MAIN_IMU = (1<<2)
BLINK_PROFILE = (1<<3)
EMERGENCY_STOP = (1<<4)
MAGNETOMETER_POS_FRAME = (1<<5)
FRAME_IMU_FF = (1<<6)
OVERHEAT_STOP_MOTORS = (1<<7)
CENTER_YAW_AT_STARTUP = (1<<8)
SWAP_RC_SERIAL_UART_B = (1<<9)
UART_B_SERIAL_API = (1<<10)
BLINK_BAT_LEVEL = (1<<11)
ADAPTIVE_GYRO_TRUST = (1<<12)

(frw. ver. 2.66+)
IS_UPSIDE_DOWN = (1<<13)

PROFILE_FLAGS1

2u

ADC1_AUTO DETECTION = (1<<@)

ADC2_AUTO DETECTION = (1<<1)

ADC3_AUTO DETECTION = (1<<2)
FOLLOW_USE_FRAME_IMU = (1<<4)
BRIEFCASE_AUTO_DETECTION = (1<<5)
UPSIDE_DOWN_AUTO ROTATE = (1<<6)
FOLLOW_LOCK_OFFSET_CORRECTION = (1<<7)
START_NEUTRAL_POSITION = (1<<8)
MENU_BUTTON_DISABLE_FOLLOW = (1<<9)
TIMELAPSE_FRAME_FIXED = (1<<10)
RC_KEEP_MIX_RATE = (1<<11)
RC_KEEP_CUR_POS_ON_INIT = (1<<12)

(frw. ver. 2.66+)
OUTER_MOTOR_LIMIT_FREE_ROTATION = (1<<13)
(frw. ver. 2.69b3+)
GIMBAL_LOCK_SMOOTH_TRANSITION = (1<<14)
(frw. ver. 2.69b0+)

CAM_UPSIDE_DOWN_WORKING = (1<<15)

SPEKTRUM_MODE

Auto-detection (default)
DSM2/11ms/10bit
DSM2/11ms/11bit
DSM2/22ms/10bit
DSM2/22ms/11bit
DSMX/11ms/10bit

uhwWNREO

ﬁ‘ © Basecamelectronics® 2024

17

Configuring gimbal

SimpleBGC32 Serial API protocol specification

6 DSMX/11ms/11bit
7 DSMX/22ms/10bit
8 DSMX/22ms/11bit

ORDER_OF AXES

1u

Order of hardware axes, counting from a camera:

PITCH_ROLL_YAW = ©
YAW_ROLL_PITCH = 1
ROLL_YAW_PITCH* = 2
ROLL_PITCH_YAW = 3

* implemented in special builds of firmware only

EULER_ORDER

1u

Order of Euler angles to represent the current orientation of a
camera and the target of stabilization:

0
1

PITCH_ROLL_YAW
ROLL_PITCH_YAW
LOCAL_ROLL* = 2
ROLL_LOCAL* = 3
YAW_ROLL_PITCH
YAW_PITCH_ROLL

4
5

* used for 2-axis systems only

CUR_IMU

1u

currently selected IMU
IMU_TYPE_MAIN=1
IMU_TYPE_FRAME=2

CUR_PROFILE_ID

1u

profile ID which is currently active in the controller, 0...4

CMD_READ_PARAMS _EXT (#33) - read/write system configuration part 2

Name Type Min Max Possible values, remarks
PROFILE_ID 1u profile ID to read or write. To access current (active) profile,
specify 255. Possible values: 0..4
® |NOTCH_FREQ][3] 1u*3 |0 255 Center frequency, x2 Hz (value 10 means 20Hz), for each axis
T RPY
% NOTCH_WIDTHI3] 1u*3 |0 255 Width of -3dB gain band, Hz, for each axis R,P,Y
LPF_FREQ[3] 2u*3 |0 1000 |Low-pass filter -3dB cut-off frequency, Hz
FILTERS_ENI3] 1u*3 Set of bits (@ - disable all):
EN_NOTCH1 = 1
EN_NOTCH2 = 2
EN_NOTCH3 = 4
EN_LPF = 8
ENCODER_OFFSETI[3] 2s*3 Units: 0,02197265625 degree
ENCODER_FLD_OFFSETI[3 | 2s*3 Units: ©,02197265625 degree
]
ENCODER_MANUAL_SET_ |1u*3 |0 255 Units: 16ms
TIME[3]
MOTOR_HEATING_FACTO |1u*3 |0 255

“ © Basecamelectronics® 2024

18

SimpleBGC32 Serial API protocol specification

R[3]

MOTOR_COOLING_FACTO |1u*3 |0 255

R[3]

RESERVED 2b

FOLLOW_INSIDE_DEADBA | 1u 0 255

ND

MOTOR_MAG_LINK][3] 1u*3 |0 255 Deprecated, replaced by the MOTOR_MAG_LINK_FINE

MOTOR_GEARING[3] 2u*3 Real number encoded as 8.8 fixed point (1.0f — 256)

ENCODER_LIMIT_MIN[3] 1s*3 |-127 127 Units: 3 degree

ENCODER_LIMIT_MAX[3] |1s*3 Startig from ver. 2.61 is deprecated, replaced by the
FRAME_CAM_ANGLE_MIN.

NOTCH1_GAIN[3] 1s*3 [-100 100 Notch gain, in dB (positive — notch, negative — peak filter)

NOTCH2_GAIN[3] 1s*3

NOTCH3_GAIN[3] 1s*3

BEEPER_VOLUME u |0 255

ENCODER_GEAR_RATIO[3] | 2u*3 Units: 0.001

ENCODER_TYPEJ3] 1u*3 Bits @..3:

ENC_TYPE_AS5048A = 1
ENC_TYPE_AS5048B = 2
ENC_TYPE_AS5048_PWM = 3
ENC_TYPE_AMT203 = 4
ENC_TYPE_MA3_1@BIT = 5
ENC_TYPE_MA3_12BIT = 6
ENC_TYPE_ANALOG = 7

ENC_TYPE_I2C_DRV1 = 8
ENC_TYPE_I2C_DRV2 = 9
ENC_TYPE_I2C_DRV3 = 10
ENC_TYPE_I2C_DRV4 = 11

ENC_TYPE_AS5600_PWM = 12
ENC_TYPE_AS5600_I2C = 13

ENC_TYPE_RLS_ORBIS = 14
TYPE_RLS_ORBIS_PWM = 15
Bit 4:
SKIP_DETECTION = 1
Bit 7:

ENCODER_IS_GEARED = 1

ENCODER_CFG[3] 1u*3 For SPI encoders:
SPI_SPEED_1MHz
SPI_SPEED_2MHz
SPI_SPEED_4MHz =
SPI_SPEED_500kHz

For I2C_DRV:
internal encoder type

1]
LI NS R o]

OUTER_P[3] 1u*3 |0 255
OUTER_I[3] 1u*3 |0 255
MAG_AXIS_TOP 1s X =1
MAG_AXIS_RIGHT 1s Y =2
Z =3
X = -1

'ﬁ‘ © Basecamelectronics® 2024 19

Configuring gimbal

SimpleBGC32 Serial API protocol specification

-Y = -2
-z = -3
MAG_TRUST 1u |0 255
MAG_DECLINATION 1s -90 90 Units: 1 degree
ACC_LPF_FREQ 2u 0 1000 |Units: 0.01Hz
D_TERM_LPF_FREQI3] 1u*3 |0 60 Units: 16Hz

CMD_READ_PARAMS_EXT2 (#62) - read/write system configuration part 3

Name Type Min Max Possible values, remarks
PROFILE_ID 1u profile ID to read or write. To access current (active) profile,
specify 255. Possible values: 0..4
MAV_SRC 1u Disabled=0
UART1=1
RC_SERIAL=2
UART2=3
USB VCP=4
~ MAV_SYS_ID 1u |0 255
ﬁ’ MAV_COMP_ID 1u |0 255
©
S| MAV_CFG_FLAGS 1u FLAG_BAUD_MASK = ((1<<@) | (1<<1) | (1<<2)) // baud
X rate idx ©..5
© FLAG_PARITY_EVEN = (1<<3) // even parity
FLAG_HEARTBEAT = (1<<4) // send heartbeat
FLAG_DEBUG = (1«<<5) // send debug to GUI
FLAG_RC = (1<<6) // use RC values
MAV_RESERVED 4b
MOTOR_MAG_LINK_FINE[3 |2u*3 |0 65000 |Units: @.01
]
ACC_LIMITER[3] 1u*3 |0 200 Units: 5 degrees/sec?’
PID_GAIN[3] 1u*3 |0 255 pid_gain_float[axis] = 0.1 + PID_GAIN[axis]*0.02
FRAME_IMU_LPF_FREQ u |0 200 Units: Hz
AUTO_PID_CFG 1u See 'CFG_FLAGS' in the CMD_AUTO_PID
AUTO_PID_GAIN 1u |0 255 See 'GAIN_VS_STABILITY' in the CMD_AUTO_PID
FRAME_CAM_ANGLE_MIN][| 2s*3 Software limits for motor's angles (frw. ver. 2.61+)
3] 2s*3 Units: 1 degree
FRAME_CAM_ANGLE_MAX
(3]
GENERAL_FLAGS2 2u (frw. ver. 2.61+)
SEARCH_LIMIT ROLL = (1<<®)
SEARCH_LIMIT _PITCH = (1<<1)
SEARCH_LIMIT YAW = (1<<2)

“ © Basecamelectronics® 2024

20

SimpleBGC32 Serial API protocol specification

(frw. ver. 2.62b7+)
AUTO_CALIBRATE_MOMENTUM = (1<<3)
USE_MOMENTUM_FEED_FORWARD = (1<<4)
MOTORS_OFF_AT_STARTUP = (1<<5)
FC_BELOW_OUTER = (1<<6)

(frw. ver. 2.66+)
DO_NOT_CHECK_ENCODER_LIMITS = (1<<7)
AUTO_SAVE_BACKUP_SLOT = (1<<8)
FC_BELOW_MIDDLE = (1<<9)
Note: if both flags FC_BELOW_OUTER and
FC_BELOW_MIDDLE are set, it means FC
position on the camera platform
(frw. ver. 2.67b2+)
ENVIRONMENT_TEMP_UNKNOWN = (1<<10)
LPF_EXTENDED_RANGE = (1<<11)
SAVE_SYSTEM_STAT = (1<<12)
FLAG2_DISABLE_ACC = (1<<13)
FLAG2_DISABLE_POWER_MANAGER = (1<<14)
ALLOW_FRAME_IMU_AS_MAIN = (1<<15)

AUTO_SPEED 1u 255 (frw. ver. 2.61+)
Speed used in automated tasks. The same range as for the
RC_SPEED parameter
AUTO_ACC_LIMITER 1u 255 (frw. ver. 2.61+)
Acceleration limiter used in automated tasks. The same range
as for ACC_LIMITER parameter
Units: 5 degrees/sec?
IMU_ORIENTATION_CORR] |2s*3 (frw. ver. 2.61+)
3] The rotation angle of correction of main IMU sensor
misalignment over its local X,Y,Z axis.
Units: .01 degrees
TIMELAPSE_TIME 2u (frw. ver. 2.60+)
Time for the time-lapse motion sequence
Units: seconds
EMERGENCY_STOP_REST |2u Units: ms
ART_DELAY
TIMELAPSE_ACC_PART 1u 250 Units: 0.2%
MOMENTUM[3] 2u*3 (frw.ver. 2.62b7+)
MOMENTUM_CALIB_STIM |1u*3 255 (frw.ver. 2.62b7+)
ULUS[3]
MOMENTUM_ELITPICITY[3] | 1u*3 255 (frw.ver. 2.62b7+)
Units: 0.05
FOLLOW_RANGE[3] 1u*3 180 (frw.ver. 2.62b7+)
Units: degrees
STAB_AXIS[3] 1u*3 (frw.ver. 2.62b7+)

Bits0..1: axis assigned for each motor:

0 - default
1 - ROLL

2 - PITCH

3 - YAW

Bits2..4: enable automatic selection of best matching axis:
bit2: ROLL
bit3: PITCH

'ﬁ‘ © Basecamelectronics® 2024

21

SimpleBGC32 Serial API protocol specification

bit4: YAW

OUTER_MOT _TILT_ANGLE

1s

-90

90

Units: degrees

The following parameters are applied for the firmware ver. 2.66+

STARTUP_ACTIONI[4] 1u*4 bits 0..6: action, as listed in the
CMD_EXECUTE_MENU.CMD_ID
bit7: if set, menu button should be pressed
STARTUP_ACTION_SRC[2] |1u*8 Signal source, as listed in the RC_MAP_ROLL parameter
[4]
STARTUP_ACTION_THRES | 1s*8 Threshold for RC signal on a given source, multiplied by 10.
HOLDI2][4]
FORCE_POSITION_CFGJ[3] |1u*3 bits 0..2: snap angle, one of the 0, 45, 90, 180
bits 4..7: flags:
FORCE_POSITION_FLAG BUTTON_PRESS = (1<<4)
FORCE_POSITION_FLAG_STARTUP = (1<<5)
FORCE_POSITION_FLAG_IGNORE_LIMITS = (1<<6)
FORCE_POSITION_FLAG_FINE_ADJUST = (1<<7)
STEP_SIGNAL_SRC 1u Signal source, as listed in the RC_MAP_ROLL parameter
STEP_SIGNAL_CFG 1u bits 0..2: number of steps, one of the [2, 3, 5, 10, 15,
© 25, 50, 100]
- bit 3: if set, menu button should be pressed
z bit 5: if set, initial value is zero
bits 6..7: mode
MODE_LEVEL_LOW = ©
MODE_LEVEL_HIGH = 1
MODE_LEVEL_LOW_HIGH = 2
RC_CALIB_SRC 1u Signal source to apply calibration, as listed in the
RC_MAP_ROLL parameter
RC_CALIB_OFFSET 1s
9}
‘,‘,' RC_CALIB_NEG_SCAL |1u Calibration is applied by the rule:
Z\E val = val + RC_CALIB_OFFSET*(RC_RANGE/2/128);
if(val > 0) val = val * (80 + RC_CALIB_POS_SCALE) / 100;
RC CALIB POS SCAL |1u else val = val * (80 + RC_CALIB_NEG_SCALE)/ 100;
E
PARKING_POS_CFG 1u ROLL: bit 0 — negative border, bit 1 — positive border
PITCH: bit 2 — negative border, bit 3 — positive border
YAW: bit 4 — negative border, bit 5 — positive border
EXT_LED_PIN_ID 1u Use this pin to duplicate the on-board LED function. Values are
listed in the CMD_TRIGGER_PIN.PIN_ID
INTERRUPT_CFG 2u bits 0..4: pin ID as listed in the CMD_TRIGGER_PIN.PIN_ID
bit 5: generate interrupt on emergency stop
bit 6: generate interrupt on entering parking position
OVERLOAD_TIME 1u Units: 100ms
AUTO_PID_MOMENTUM u |0 255
JERK_SLOPEJ3] 1u*3 Units: 40ms
MAV_CTRL_MODE u |0 2 0 — disabled
1 —ROLL and PITCH axes
2 —all axes

ﬁ‘ © Basecamelectronics® 2024

22

Configuring gimbal

SimpleBGC32 Serial API protocol specification

RC_SERIAL_SPEED 1u*2 See the SERIAL_SPEED parameter definition
UART2_SPEED
MOTOR_RES[3] 1u*3 |0 255 Motor resistance (one phase)
Units: 100 mOhm
CURRENT_LIMIT 2u |0 65535 | Units: 10mA
MIDDLE_MOT_TILT_ANGL |1s |-90 90 (frw. ver. 2.67+)
E Units: degrees

CMD_READ_PARAMS_EXT3 (#104) - read/write system configuration part 3

(frw.ver. 2.66+)

Name Type Min Max Possible values, remarks
PROFILE_ID 1u profile ID to read or write. To access current (active) profile,
specify 255. Possible values: 0..4
RESERVED 21b
EXT_IMU_TYPE 1u MavLinkl = 1
MavLink2 = 2
Vectornav VN20© = 3
Inertialsense UAHRS = 4
EXT_IMU_PORT 1u Disabled = ©
UART1 =1
RC_SERIAL = 2
UART2 = 3
USB VCP = 4
EXT_IMU_POSITION 1u BELOW_OUTER = 1
ABOVE_OUTER = 2
BELOW_MIDDLE = 8
MAIN_IMU = 9
EXT_IMU_ORIENTATION 1u index in array [X, Y, Z, -X, -Y, -Z]
bit0..2 for the TOP axis
bit3..5 for the RIGHT axis
EXT_IMU_FLAGS 2u EXT_IMU_FLAG_ACC_COMP_ONLY =2
EXT_IMU_FLAG_REPLACE =4
EXT_IMU_FLAG_Z=38
EXT_IMU_FLAG_H =16
EXT_IMU_FLAG_FRAME_UPSIDE_DOWN_UPDATE = 32
EXT_IMU_FLAG_AS_FRAME_IMU = 64
EXT_IMU_FLAG_GYRO_CORR = 128 (frw.ver. 2.68b7+)
EXT_IMU_ALIGN_CORREC |2s*3 Rotation over X,Y,Z axes
TION[3] Units: 0.001 degrees
EXT_IMU_STARTUP_DELA |1u Units: 50ms
Y
EXT_IMU_GYRO_CORR_R |1u Strength of the gyroscope correction by ext. IMU in the “online
ATE calibration” algorithm.
EXT_IMU_RESERVED 4b
SOFT_LIMIT_WIDTH[3] 1u*3 |1 255 Width of the software limits defined by the
2024 23

“ © Basecamelectronics®

Configuring gimbal

SimpleBGC32 Serial API protocol specification

FRAME_CAM_ANGLE_MIN, FRAME_CAM_ANGLE_MAX
Units: 0.1 degrees

ADC_REPLACE_SRC[3] 1u*3

See RC_MAP_ROLL description for possible values

GLOCK_MID_MOT_POS_C
ORR_RATE

255

EXTRA_BTN_CFG[5] 5b

Extra buttons connected to controller's pins.

Bits0..4: MCU pin source, see PIN_ID in CMD_TRIGGER_PIN
Bit6: latching mode if set

Bit7: invert action if set

POWER_CTRL_CFG 8b

1u: overcurrent_protection, units: 0.5A
1u: power_on_delay, units: 100ms

1u: power_off_delay, units: 100ms

1u: power_on_limiter, 0..255

4b: reserved

RESERVED 3b

CAN_IMU_EXT_SENS_TYP
E

disabled

KVH 1725

KVH 1750 (ACC 2G)

KVH 1750 (ACC 10G)

KVH 1750 (ACC 30G)

KVH 1775 (ACC 10G)

KVH 1775 (ACC 25G)

KVH 1760

ADXRS453

ADIS16460

STIM210

11 STIM300

SCHAB3X

Vectornav VN100/200 (UART)
Vectornav VN100/200 (SPI)

©Co~NoOOOrWN-0O

PROFILE_FLAGS2 2u

FOLLOW_PITCH_DISABLED = (1<<0)
LOW_ANGLE_PRIOR_ROLL = (1<<1)
LOW_ANGLE_PRIOR_PITCH = (1<<2)
LOW_ANGLE_PRIOR_YAW = (1<<3)
HEADING_TRIPOD_MODE = (1<<4)

RESERVED 3b

GENERAL_FLAGS3 4u

ENC_LUT_EN_ROLL = (1<<0)
ENC_LUT_EN_PITCH = (1<<1)
ENC_LUT_EN_YAW = (1<<2)
MAVLINK_YAW ABSOLUTE = (1<<3)

FOLLOW_OFFSET_EXT[3] |2s*3

-16384

16384

Frw. ver. 2.70+: replaces old 8-bit FOLLOW_OFFSET[3]
Units: 0,02197265625 degree

MOTOR_STARTUP_DELAY |2u

Units: ms

RESERVED 140b

CMD_READ_PROFILE_NAMES (#28) - receive profile names from EEPROM

Min

Max

Possible values, remarks

Type
48b*

PROFILE_NAME[5]

Each name is encoded in UTF-8 format and padded with \0'
character to 48 byte size

“ © Basecamelectronics® 2024

24

SimpleBGC32 Serial API protocol specification

#‘ © Basecamelectronics® 2024 25

Calibrating SimpleBGC32 Serial API protocol specification

Calibrating

Requests

CMD_CALIB_ACC (#65) - calibrate accelerometer
CMD_CALIB_GYRO (#103) - calibrate gyroscope
CMD_CALIB_MAG (#59) - calibrate magnetometer

Simple format: no parameters. Starts regular calibration of currently active IMU, selected by the
CMD_SELECT_IMU_3 command.

Extended format:

Name Type Min Max Possible values, remarks
IMU_IDX 1u (0 — currently active IMU, 1 — main IMU, 2 — frame IMU)
ACTION 1u 1 — do regular calibration

2 —reset all calibrations and restart

3 — do temperature calibration

4 — enable temp. calib. data, if present, and restart

5 — disable temp. calib. data (but keep in memory), and restart
6 — copy calibration from the sensor's EEPROM to the main
EEPROM ("restore factory calibration" option)

7 — copy calibration from the main EEPROM to the sensor's
EEPROM

TIME_MS 2u 0 65535 | Time for gyroscope calibration, in milliseconds. If set to 0,
default time is used (~4 seconds), which is good balance
between precision and speed.

RESERVED 8b
If all parameters are valid, confirmation is sent immediately on reception and in the end of calibration.

CMD_CALIB_EXT_GAIN (#71) - calibrate EXT_FC gains

No parameters

CMD_CALIB_POLES (#80) - calibrate poles and direction

No parameters

CMD_CALIB_BAT (#66) - calibrate internal voltage sensor

Name Type Min Max Possible values, remarks
ACTUAL_VOLTAGE 2u Units: 0.01V

Confirmation is sent.

CMD_ENCODERS_CALIB_OFFSET_4 (#26) - calibrate offset of encoders

No parameters.

‘,‘ © Basecamelectronics® 2024 26

Calibrating SimpleBGC32 Serial API protocol specification

(frw. ver. 2.68b7+) optional parameter FOR_MOTOR (1u): value 0..2 to calibrate offset only for the given
motor ROLL, PITCH or YAW. Value 255 — for all motors.

CMD_ENCODERS_CALIB_FLD_OFFSET_4 (#27) - start field offset calibration of encoders

All parameters are optional. Note the version of the firmware where they started to be supported.

Name Type Min Max Possible values, remarks
CALIB_ANGLE[3] 2s*3 |1 - Angle range to move during calibration. If omitted, default is 40°.
(optional, frw. ver. 2.62b6+) Units: 0,02197265625 degree.
CALIB_SPEEDI3] 2s*3 |1 - Speed of movement during the calibration. If omitted, default is
(optional, frw.ver. 2.71b1+) 100.
Units: 0,06103701895 deg./sec.
CALIB_FLAGS 2u FLAG_IGNORE_IMU_CHECK (1<<@) —ignore IMU angle vs
(optional, frw.ver. 2.70b8+) motor angle validity check
FLAG_IGNORE_ENCODER_CHECK (1<<1) —ignore encoder angle
vs motor angle validity check

CMD_CALIB_ORIENT_CORR (#91) - start the calibration of sensor misalignment correction
(frw. ver. 2.61+)

Name Type Min Max Possible values, remarks
RESERVED 16b

Confirmation is sent immediately. After calibration is finished, CMD_READ_PARAMS_EXT2 is sent with new
values in the IMU_ORIENTATION_CORR[3].

CMD_CALIB_ACC_EXT_REF (#94) - refine the accelerometer calibration of the main IMU
sensor

(frw. ver. 2.62b7+, encoders)

Use this command to refine the ACC calibration in the main IMU sensor by providing the reference ACC
vector from the external well-calibrated IMU in the frame's coordinates. By using three encoders, gimbal
controller is able to convert it to the main IMU's local coordinates, compare to measured ACC vector and use
it to refine existing calibration: zero offset for two horizontal axes and scale factor for the vertical axis.

Type Min Max Possible values, remarks

ACC_REFI[3] 2s*3 Reference ACC vector [X,Y,Z] in gimbal frame's coordinates (X-
axis points right, Y-axis points forward, Z-axis points down
relative to frame).

Units: 1g/512 = 0,019160156 m/s?

RESERVED 14b | |

Conditions:
* One of the sensor's axis should be aligned to a gravity vector with the 20-degree tolerance
» Existing ACC calibration should be good enough

',‘ © Basecamelectronics® 2024 27

Calibrating SimpleBGC32 Serial API protocol specification

Possible usage scenario:
1. Rotate gimbal to a leveled position by the CMD_CONTROL and run this command — X,Y-axis offset
will be refined
2. Tilt gimbal 90-degree down and run it again — Z-axis offset and Y-axis scale will be refined.
3. Return gimbal back to leveled position and run it again — Z-axis scale will be refined. This is enough
to have correct ACC readings inside the working range ROLL=0, PITCH = [0..90].

Calibration takes about 0.5 seconds (controller averages multiple data samples to reduce noise).
Confirmation is sent only if all conditions are satisfied.

CMD_CALIB_COGGING (#93) - starts the motor non-linearities calibration

Name Type Min Max Possible values, remarks
ACTION 1u 1 — Calibrate
2 — Delete calibration data
AXIS_TO_CALIBRATE 1u Bit0: ROLL
Bit1: PITCH
Bit2: YAW
ANGLE 2u |20 360 Angle to move, in degrees
5'0: SMOOTH 1u 0 100 Smooth the resulting curve, in %
:}J SPEED 1u Speed of rotation, in relative units
=
g PERIOD 2u Expected period of non-linearity curve, in degrees.
= Leave 0 for auto-detection.
RESERVED 9b
ITERATIONS_NUM 1u 2 -
RESERVED 9b

Command CMD_CONFIRM is sent in response with the DATA = 1 or 2 on success, 254 on error.
Another command CMD_CONFIRM with the DATA = 255 is sent when calibration finishes.

CMD_SYNC_MOTORS (#123) - mechanically align motors working in parallel for a single axis
(frw. ver. 2.70b9+)

Name Type Min Max Possible values, remarks
AXIS 1u 0 ROLL
1 PITCH
2 YAW
POWER 1u |0 255 Amount of power to apply to motor's winding in synchronous
mode
TIME_MS 2u |0 65535 | Power is applied for the given time, then motors are turned OFF
ANGLE 2u Angle to rotate. 0 to hold the current position.

Command CMD_CONFIRM is sent in response immediately and another command CMD_CONFIRM with

‘,‘ © Basecamelectronics® 2024 28

SimpleBGC32 Serial API protocol specification

the DATA = 1 is sent when the calibration finishes.

“ © Basecamelectronics® 2024 29

Real-time state monitoring and diagnostics SimpleBGC32 Serial API protocol specification

Real-time state monitoring and diagnostics

Requests

CMD_REALTIME_DATA_CUSTOM (#88) - request configurable realtime data
(frw. ver. 2.60+)

Name Type Min Max Possible values, remarks

FLAGS 4u Each bit specify which data to include in response
bite: IMU_ANGLES[3]

bitl: TARGET_ANGLES[3]

bit2: TARGET_SPEED[3]

bit3: FRAME_CAM_ANGLEJ[3]

bit4: GYRO_DATAJ[3]

bit5: RC_DATA[6]

bit6: Z_ VECTORI[3], H_VECTOR[3]
bit7: RC_CHANNELS[18]

bit8: ACC_DATA[3]

bit9: MOTOR4 CONTROL data structure
bit1e: AHRS DEBUG INFO data structure
bit11: ENCODER_RAW24[3]

bit12: IMU_ANGLES_ RADI[3]

bit13: SCRIPT_VARS_FLOAT[10]
bit14: SCRIPT_VARS_INT16[10]
bit15: SYSTEM POWER STATE data structure
bitli6: FRAME_CAM_RATE[3]

bit17: IMU_ANGLES 20[3]

bit18: TARGET_ANGLES_20[3]
bit19: COMM_ERRORS

A detailed description of the data structure is provided in the
CMD_REALTIME_DATA_CUSTOM response specification

RESERVED 6b

CMD_REALTIME_DATA (#68),
CMD_REALTIME_DATA_3 (#23) - request real-time data, response is
CMD_REALTIME_DATA_3

No parameters

CMD_REALTIME_DATA_4 (#25) - request extended real-time data, response is
CMD_REALTIME_DATA 4

No parameters

CMD_DATA_STREAM_INTERVAL (#85) - register or update data stream - a commands sent by
the controller with the fixed rate without request

(frw. ver. 2.60+) or based on events (2.65+)

For each serial interface, only one unique combination of CMD_ID + CONFIG bytes may be registered. If the

',‘ © Basecamelectronics® 2024 30

SimpleBGC32 Serial API protocol specification

data stream is already registered, it will be updated. To unregister it, specify INTERVAL_MS=0. The total
number of data streams over all serial interfaces is limited to 10.

Take care of the serial bandwidth: if data flow exceeds bandwidth, particular messages may be skipped.
The interval is maintained with the +-1ms tolerance for the individual sample, but the averaged sample rate
exactly matches to the specified.

Name Type Min Max Possible values, remarks

CMD_ID 1u Command ID to be sent by this data stream. All supported
commands are listed for the "CONFIG" parameter below.

INTERVAL_MS 2u SYNC_TO_DATA = 0:

Interval between messages, in milliseconds.
Value 1 means each cycle (0.8ms)

SYNC_TO _DATA I= 0:
Sample rate divider

Set value = 0 to unregister this data stream identified by the
[CMD_ID, CONFIG] bytes.

CONFIG 8b Configuration specific to each command:

CMD_REALTIME_DATA_3
CMD_REALTIME_DATA_4
no parameters

CMD_REALTIME_DATA_CUSTOM
» flags — 4u, see command specification.

CMD_AHRS_HELPER
* imu_type — 1u (0 — main IMU, 1 — frame IMU).

CMD_EVENT (ver. 2.65b7+)
+ event_id — 1u - One of the EVENT_ID_xx, see the
CMD_EVENT command specification
* event_type — 1u - a bitwise combination of the
EVENT_TYPE_xx flags, see the CMD_EVENT
command specification

SYNC_TO_DATA 1u If set, message is sent immediately after the specified type of
(frw.ver 2.70b1) data is updated. The parameter INTERVAL_MS=N specifies the
sample rate divider (message is sent on each N-th update
event).
Data types:

IMU_ATTITUDE = 1 —IMU attitude (Euler angles and DCM),
updated each 8ms

RESERVED 9b

If the data stream is successfully registered or updated, the CMD_CONFIRM is sent in answer.

For the command CMD_EVENT, the behavior is different. This message is sent only once when the event is
triggered, so the parameter INTERVAL_MS does not matter and should be set to any non-zero value. But it
is still used for the "continuous" events like EVENT_TYPE_HOLD. The "event_type" parameter can be used
to select which events to report.

Examples:

+ Send CMD_REALTIME_DATA_4 with the rate 20Hz:
19 32 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 0O 00

“ © Basecamelectronics® 2024 31

Real-time state monitoring and diagnostics SimpleBGC32 Serial API protocol specification

+ Send CMD_REALTIME_DATA_CUSTOM (IMU angles + RC target angles) with the rate 10Hz:
58 64 00 03 00 00 00 00 00 00 00 0O 00 0O 00 00 VO 00 00 00 00

« Send CMD_EVENT when the mode button is pressed and released (once), and held (at 10Hz):
66 64 00 01 07 00 00 00 0O PO 00 00 0O PO 00 PO PO 00 00 00 00

CMD_READ_RC_INPUTS (#100) - read values for the selected RC inputs

Name Type Min Max Possible values, remarks

CFG_FLAGS 2u bit0: try to initialize input, if it was not used by the controller and
was not initialized.

RC_SRCIN] 1u*N List of signal sources. Possible values are listed in the
RC_MAP_ROLL parameter.

In response, CMD_READ_ RC_INPUTS is returned with the values for the requested RC sources.

CMD_GET_ANGLES (#73), CMD_GET_ANGLES_EXT (#61) - Request information related to IMU
angles and RC control state

No parameters.

CMD_SELECT_IMU_3 (#24) - Select which IMU to calibrate or send realtime data
(for commands that don't specify IMU type explicitly)

Type Min Max Possible values, remarks

IMU_TYPE 1u IMU_TYPE_MAIN=1
IMU_TYPE_FRAME=2

If the selected IMU is not connected, command is ignored.

CMD_DEBUG_VARS_INFO_3 (#253) - request information about debug variables

No parameters.

CMD_DEBUG_VARS_3 (#254) - request values of debug variables

No parameters.

CMD_CALIB_INFO (#49) - request information required for the "Calibration helper” dialog
window

Name Type Min Max Possible values, remarks
IMU_TYPE 1u 1 —main IMU, 2 — frame IMU
| RESERVED 11b | | | |

On success, CMD_CALIB_INFO is sent in response.

',‘ © Basecamelectronics® 2024 32

Real-time state monitoring and diagnostics SimpleBGC32 Serial API protocol specification

CMD_READ_STATE_VARS (#111)- request reading system persistent state variables,
cumulative statistics and maintenance data

(min. frw.ver. 2.68b7, “Extended” family only)
No parameters. CMD_READ_STATE_VARS message is sent in response.

CMD_WRITE_STATE_VARS (#112) - write system persistent state variables, cumulative
statistics and maintenance data

Data structure is the same as in the CMD READ STATE VARS.
CMD_CONFIRM is sent in response on success.

CMD_SET_DEBUG_PORT (#249) - use this port for debugging

Forward all incoming and outgoing commands in other serial API ports to the current port. Only one port in
the system may be configured for this role.

Name Type Min Max Possible values, remarks
ACTION 1u 0 — Stop using this port for debugging
1 — Start using this port for debugging
CMD_FILTER 4u Set the following bits to prevent sending heavy-duty commands
“plus” version only to the debug port:

0: CMD_REALTIME_DATA_3,

1: CMD_REALTIME_DATA_4,

: CMD_REALTIME_DATA_CUSTOM,
: CMD_DEBUG_VARS_3,

: CMD_MAVLINK_DEBUG,

: CMD_GET_ANGLES,

: CMD_GET_ANGLES_EXT,

: CMD_BODE_TEST _DATA,

: CMD_HELPER_DATA,

: CMD_AHRS_HELPER,

10: CMD_GYRO_CORRECTION,

11: CMD_CONTROL,

12: CMD_SET_ADJ_VARS_VAL,

13: CMD_API_VIRT_CH_CONTROL,
14: CMD_API_VIRT_CH_HIGH_RES

O©CoOo~NOOOPAWN

RESERVED 11b

Command CMD_CONFIRM is sent in response. All in and out commands from other ports that were passed
the filter, are sent in CMD_SET DEBUG PORT incoming command. If there are no enough room in TX buffer,
command will be dropped.

Responses

CMD_REALTIME_DATA_CUSTOM (#88) - configurable realtime data
(frw. ver. 2.60+)

Name Type Min Max Possible values, remarks
TIMESTAMP_MS 2u Timestamp in milliseconds

',‘ © Basecamelectronics® 2024 33

SimpleBGC32 Serial API protocol specification

The set of varaibles below depends on requested data,

see the CMD_REALTIME_DATA_CUSTOM request

specifications
IMU_ANGLESJ[3] 2s*3 Main IMU angles (Euler)
Units: 0,02197265625 degree.
TARGET_ANGLESJ3] 2s*3 Target angles that gimbal should keep (Euler)
Units: 0,02197265625 degree.
TARGET_SPEEDI[3] 2s*3 Target speed that gimbal should keep, over Euler axes
Units: 0,06103701895 degree/sec
FRAME_CAM_ANGLE[3] 2s*3 Relative angle of joints (motors)
Units: 0,02197265625 degree.
GYRO_DATA[3] 2s*3 Data from the gyroscope sensor with the calibrations applied.
Units: 0,06103701895 degree/sec.
RC_DATA[6] 2s*6 RC data in high resolution, assigned to the ROLL, PITCH, YAW,
CMD, FC_ROLL, FC_PITCH inputs.
Units: normal range is -16384..16384, -32768 is for 'undefined'
signal
Z_VECTOR[3] 4f*6 | -1.0f 1.0f IMU attitude in a form of rotation matrix (2 rows as gravity and
H_VECTOR][3] heading vectors, 3 row can be calculated as cross-product of
them). See Appendix D: Coordinate system conversions
RC_CHANNELS[18] 2s*18 All RC channels captured from s-bus, spektrum or Sum-PPM
inputs.
Mapped to -16384..16384, -32768 is for 'undefined' signal
ACC_DATA[3] 2s*3 Data from the accelerometer sensor with the calibrations
applied, expressed in END coordinate system, sign is inverted.
Units: 1/512 G
AHRS_DEBUG_INFO 26b See the AHRS DEBUG INFO specification
MOTOR4_CONTROL 8b See the MOTOR4_CONTROL specification
ENCODER_RAW24[3] 3b*3 Encoder raw angles in a high resolution (24bit per full turn), 3
bytes for each encoder in a sequence for ROLL, PITCH, YAW
motors, lower byte first. Total 9 bytes.
(frw. ver. 2.68+)
IMU_ANGLES_RAD[3] 4f*3 | -Pi Pi Main IMU Euler angles in radians
(frw. ver. 2.68b7+)
SCRIPT_VARS_FLOAT[3] 4f*3 Script variables in floats
SCRIPT_VARS_INT16[3] 2s*3 Script variables in 16-byte signed integers
SYSTEM_POWER_STATE (frw. ver. 2.70b6+) WARNING: specification is not final, may be changed in future!
™ | MOT_POWER 2s -10000 | 10000 | Effective power that produces torque, 10000 for 100%
S Encoder firmware: sign corresponds to the torque direction
Il
5 | MOT_CURRENT 2u 0 65535 | Estimated or measured current consumption per motor
é Units: mA
MOT_TEMP 1s Motor temperature estimated by heating model (if configured) or
measured by the hardware sensors (if present)
Units: °C
MOT_FLAGS 2u bite: software limit in motor is violated
bitl: current exceeds the limit
bit2: motor driver is enabled (motor energized)
'ﬁ‘ © Basecamelectronics® 2024 34

Real-time state monitoring and diagnostics

SimpleBGC32 Serial API protocol specification

MOT_RESERVED 6b
SYSTEM_POWER_STATE |1b POWER_STATE_ON_FROM_BACKUP = -2 // internal use
POWER_STATE_STARTUP = -1 // internal use
POWER_STATE_OFF = © // motors are OFF
POWER_STATE_ON = 1 // motors are ON
POWER_STATE_OFF_TEMPORARY = 2 // motors are
temporarily OFF for calibration
POWER_STATE_OFF_PARKING = 3 // motors are
temporarily OFF when entering parking position
POWER_STATE_ON_SAFE_STOP = 4 // motors are
energized to softly drop the unbalanced payload
before going OFF
BATTERY_VOLTAGE 2u Voltage measured by the hardware voltage sensor
Units: 0.01V
TOTAL_CURRENT 2u 0 65535 | Overall system current consumption measured by the hardware
current sensor (if present)
Units: mA
SYSTEM_FLAGS 2u bite: software limit is violated in any motor
bit1: overheat warning (estimated or measured temperature
exceeds 80°C)
bit2: internal driver OTW (over-temperature warning) signal
bit3: internal driver FAULT signal
FRAME_CAM_RATEJ[3] 2s*3 Rate of rotation of frame-to-camera joints (motors)
(frw. ver. 2.70b6+)
Units: 0,06103701895 degree/sec.
IMU_ANGLES_20[3] 4s*3 Main IMU angles in 20bit resolution
(frw. ver. 2.70b8+)
Units: 0,00034332275390625 degrees
TARGET_ANGLES 20[3] 4s*3 Target angles in 20bit resolution
(frw. ver. 2.70b8+)
Units: 0,00034332275390625 degrees
COMM_ERRORS frw.ver. 2.72b0 Communication errors
I2C_ERRORS 2u
SERIAL_ERRORS 2u
CAN_ERRORS 2u
CAN_ERR_FLAGS 1u bit0: err warn irq
bit1: err passive irq
bit2: bus off irq

CMD_REALTIME_DATA _3 (#23) - receive real-time data

Name Type Min Max Possible values, remarks
™ |ACC_DATA 2s Data from the accelerometer sensor with the calibrations
Ao applied, expressed in END coordinate system, sign is inverted.
1l Units: 1/5612 G
2
5 |GYRO_DATA 2s Data from the gyroscope sensor with the calibrations applied.
Units: 0,06103701895 degree/sec.
SERIAL_ERR_CNT 2u |0 65535
SYSTEM_ERROR 2u Set of bits (0 — no error):
“ © Basecamelectronics® 2024 35

SimpleBGC32 Serial API protocol specification

ERR_NO_SENSOR (1<<@)
ERR_CALIB_ACC (1<<1)
ERR_SET_POWER (1<<2)
ERR_CALIB_POLES (1<<3)
ERR_PROTECTION (1<<4)
ERR_SERIAL (1<<5)

Beside that, extended error contains bits:
ERR_LOW_BAT1 (1<<6)
ERR_LOW_BAT2 (1<<7)
ERR_GUI_VERSION (1<<8)
ERR_MISS_STEPS (1<<9)
ERR_SYSTEM (1<<10)
ERR_EMERGENCY_STOP (1<<11)

'ﬁ‘ © Basecamelectronics®

SYSTEM_SUB_ERROR 1u See Appendix E: “Emergency stop” error codes
RESERVED 3b
RC_ROLL 2s 1000 2000 |RC control channels values (PWM or normalized analog)
RC_PITCH 2s
RC_YAW 2s
RC_CMD 2s 1000 2000 |RC command channel value (PWM or normalized analog)
EXT_FC_ROLL 2s 1000 2000 |External FC PWM values. May be zero if their inputs are
EXT_FC_PITCH 2s mapped to RC control or command.
IMU_ANGLEJ3] 2s*3 |-32768 | 32767 |IMU angles in 14-bit resolution per full turn
Units: 0,02197265625 degree
FRAME_IMU_ANGLEJ3] 2s*3 |-32768 | 32767 | Angles measured by the second IMU (if present), in 14-bit
resolution.
Units: 0,02197265625 degree
TARGET_ANGLE[3] 2s*3 |-32768 | 32767 | Target angles, in 14-bit resolution
Units: 0,02197265625 degree
CYCLE_TIME 2u Units: microseconds
12C_ERROR_COUNT 2u Number of registered errors on 12C bus
ERROR_CODE 1u deprecated, replaced by the SYSTEM_ERROR variable
BAT_LEVEL 2u Battery voltage
Units: 0.01 volt
RT_DATA_FLAGS 1u bit0 set - motors are turned ON
CUR_IMU 1u Currently selected IMU that provides angles and raw sensor
data
IMU_TYPE_MAIN=1
IMU_TYPE_FRAME=2
CUR_PROFILE 1u 0 4 Currently selected profile
MOTOR_POWERJ3] 1u*3 |0 255
2024 36

Real-time state monitoring and diagnostics

SimpleBGC32 Serial API protocol specification

CMD_REALTIME_DATA_4 (#25) - receive extended version of real-time data

Name

Type Min

Max Possible values, remarks

...The beginning of the message includes all data from the CMD_REALTIME_DATA_3

FRAME_CAM_ANGLE[3] 2s*3 Relative angle of joints between two arms of gimbal structure,
measured by encoder (with offset and gearing calibration is
applied), by 2" IMU or by other algorithms. Value 0 corresponds
to normal position (each arms forms 90 degrees with the next
order arm).

Units: 0,02197265625 degree

RESERVED 1b

BALANCE_ERROR][3] 2s*3 |-512 512 Error in balance (0 — perfect balance, 512 - 100% of the motor
power is required to hold a camera)

CURRENT 2u Actual current consumption.

Units: mA

MAG_DATA[3] 2s*3 |-1000 | 1000 |Raw data from magnetometer
Units: relative, calibrated for current environment to give +1000
for each axis.

IMU_TEMPERATURE 1s -127 127 Temperature of IMU sensors.

FRAME_IMU_TEMPERATU |1s Units: Celsius

RE

IMU_G_ERR 1u 0 255 Error between estimated gravity vector and reference vector for
currently active IMU
Units: 0.1 degree

IMU_H_ERR 1u 0 255 Error between estimated heading vector and reference vector
for currently active IMU
Units: 0.1 degree

MOTOR_OUT[3] 2s*3 |-10000 | 10000 |Motor effective output, proportional to torque. Max. value of
+10000 equals to applying full power.

(encoder firmware ver. 2.61+)
CALIB_MODE 1u 0 If not 0, calibration or automatic task is performed:

CALIB_MODE_EXT_GAIN 1
CALIB_MODE_SET_ANGLE_AND_SAVE 2
CALIB_MODE_POLES 3
CALIB_MODE_ACC 4
CALIB_MODE_GYRO 5
CALIB_MODE_ENCODER_OFFSET 6
CALIB_MODE_ENCODER_FLD_OFFSET 7
CALIB_MODE_AUTO_PID 8
CALIB_MODE_BODE_TEST 9
CALIB_MODE_GYRO_TEMP 10
CALIB_MODE_ACC_TEMP 11
CALIB_MODE_MAG 12
CALIB_MODE_SET_ANGLE 13
CALIB_MODE_SYSTEM_IDENT 14
CALIB_MODE_MOTOR_MAG_LINK 15
CALIB_MODE_SEARCH_LIMITS 16
CALIB_MODE_SET_OPERATION_POS 17
CALIB_MODE_IMU_ORIENTATION_CORR 18
CALIB_MODE_TIMELAPSE 19
CALIB_MODE_MOMENTUM 20
CALIB_MODE_MOMENTUM_AUTO 21
CALIB_MODE_COGGING 22
CALIB_MODE_ACC_EXT_REF 23
CALIB_MODE_SAFE_STOP 24
CALIB_MODE_ACC_SPHERE 25
CALIB_MODE_GYRO_AXES_ALIGNMENT 26
CALIB_MODE_EXT_IMU_GYRO 27
CALIB_MODE_EXT_IMU_ALIGN 28

“ © Basecamelectronics® 2024

37

Real-time state monitoring and diagnostics

SimpleBGC32 Serial API protocol specification

CALIB_MODE_ACC_GYRO_MULTIPOINT 34

CAN_IMU_EXT_SENS_ERR | 1u

Error code from the external sensor connected to the CAN_IMU
(codes are specific to sensors).

ACTUAL_ANGLE]J3] 2s*3 Frw.ver. 2.72b0+
Depending on the current stabilization mode:
- for inertial angles it's the same as IMU_ANGLE[3]
- for motor-related modes (“Servo mode”, mixed inertial + motor
having (M) notation), it encodes the motor angle
RESERVED 22b

CMD_GET_ANGLES (#73) - Information about actual gimbal control state

Name Type Min Max Possible values, remarks
® | IMU_ANGLE 2s IMU angles in 14-bit resolution per full turn
o Units: 0,02197265625 degree
:é TARGET_ANGLE 2s Target angles, in 14-bit resolution
5 Units: 0,02197265625 degree
TARGET_SPEED 2s Target speed that gimbal should keep, over Euler axes
Units: ©,1220740379 degree/sec

CMD_GET_ANGLES_EXT (#61) - Information about angles in different format

Name Type Min Max Possible values, remarks
IMU_ANGLE 2s IMU angles in 14-bit resolution per full turn
Units: ©,02197265625 degree
TARGET_ANGLE 2s Target angles, in 14-bit resolution
) Units: ©,02197265625 degree
f’ FRAME_CAM_ANGLE |4s Relative angle of joints between two arms of gimbal structure,
» measured by encoder or 2™ IMU. Value 0 corresponds to
= normal position of a gimbal. This angle does not overflow after
multiple turns.
Units: ©,02197265625 degree
RESERVED 10b

CMD_DEBUG_VARS_INFO_3 (#253) - receive a specification of the debug variables

Name Type Min Max Possible values, remarks
DEBUG_VARS_NUM 1u 1 255 Number of variables in this messages
I | VAR_NAME string 1% byte is size, following by the ASCII characters. Note that "\0'
o character is not required at the end of the string.
VAR_TYPE 1u 0..3bits - type:

VAR_TYPE_UINT8 = 1
VAR_TYPE_INT8 = 2
VAR_TYPE_UINT16 = 3
VAR_TYPE_INT16 = 4
VAR_TYPE_UINT32 = 5
VAR_TYPE_INT32 = 6
VAR_TYPE_FLOAT = 7 (IEEE-754)

‘,‘ © Basecamelectronics® 2024

Real-time state monitoring and diagnostics SimpleBGC32 Serial API protocol specification

4..7bits - flags:

VAR_FLAG_ROLL = 16 its belong to ROLL axis
VAR_FLAG_PITCH = 32 its belong to PITCH axis
VAR_FLAG_YAW = 48 its belong to YAW axis
VAR_FLAG_ANGLE14 = 64 its an angle (14bit per turn)

)

RESERVED 2b

DEBUG|VARS_NUM

Q&ID_DEBUG_VARS_S (#254) - values of debug variables reflecting a state of the system.

The number of variables and their types are not strictly defined and may vary depending on the firmware
version. Use CMD_DEBUG_VARS _INFO_3 to obtain a specification of the variables in run-time.

Type Min Max Possible values, remarks

VAR_VALUEIN] ? size and type of each variable is encoded by the
CMD_DEBUG_VARS_INFO_3 structure

CMD_CALIB_INFO (#49) - receive information required for the "Calibration helper" dialog
window.

Name Type Min Max Possible values, remarks

PROGRESS 1u 0 100 Progress of operation in percents

IMU_TYPE 1u 1 —main IMU, 2 — frame IMU

ACC_DATA[3] 2s*3 Data from the accelerometer sensor with the calibrations

applied, expressed in END coordinate system, sign is inverted.
Units: 1/5612 G

GYRO_ABS_VAL 2u Amplitude of gyro signal

ACC_CUR_AXIS 1u |0 2 ACC axis to be calibrated

ACC_LIMITS_INFO 1u Bit set of calibrated limits, where bits 0...5 corresponds to the
index in array [+X,-X,+Y,-Y,+Z,-Z]

IMU_TEMP_CELS 1s [-127 127 IMU temperature, Celsius

TEMP_CALIB_GYRO_ENAB |1u |0 1 Set to 1 if gyro temperature calibration is enabled

LED

TEMP_CALIB_GYRO_T _MI |1s -127 127 Range of temperature calibration

N_CELS 1s Units: Celsius

TEMP_CALIB_GYRO_T_MA

X_CELS

TEMP_CALIB_ACC_ENABL Set to 1 if ACC temperature calibration is enabled

ED

TEMP_CALIB_ACC_SLOT_ |1u*6 |0 3 The number of calibrated temperature slots for accelerometer
NUM[6] for each limit, in order [+X,+Y,+Z,-X,-Y,-Z]
TEMP_CALIB_ACC_T MIN_|1s Range of temperature calibration

CELS 1s Units: Celsius

“ © Basecamelectronics® 2024 39

Real-time state monitoring and diagnostics

SimpleBGC32 Serial API protocol specification

TEMP_CALIB_ACC_T_MAX

_CELS

H_ERR_LENGTH u |0 255 The length of error vector between estimated and referenced
heading vectors.
Unit vector=100

RESERVED 7b

CMD_SCRIPT_DEBUG (#58) - state of execution of user-written script

Name Type Min Max Possible values, remarks
CMD_COUNT 2u current command counter
ERR_CODE 1u see error definitions in the CMD_WRITE_FILE command

CMD_ADJ_VARS_STATE (#46) - receive the state of adjustable variables

Name Type Min Max Possible values, remarks

Firmware ver. prior to 2.62b5

TRIGGER_RC_DATA 2s |-500 500 RC signal for the "trigger" variable slot

TRIGGER_ACTION u |0 255 ID of the triggered action. The full set of actions is given in the
specification of MENU_BTN_CMD_1..5 parameters

ANALOG_RC_DATA 2s |-500 500 RC signal for the "analog" variable slot

ANALOG_VALUE 4s Current value of the variable after all calculations

RESERVED 6b

Firmware ver. 2.62b5+

TRIGGER_RC_DATA 2s |-16384 | 16384 |RC signal for the "trigger" variable slot

TRIGGER_ACTION 1u 0 255 ID of the triggered action. The full set of actions is given in the
specification of MENU_BTN_CMD_1..5 parameters

ANALOG_SRC_VALUE 2s |-16384 | 16384 |Signal value requested in the ANALOG_SRC_ID

ANALOG_VAR_VALUE 4f Value of variable requested in the ANALOG_VAR_ID

LUT_SRC_VALUE 2s -16384 | 16384 | Signal value requested in the LUT_SRC_ID. Always encoded in
arange -16384..16384.

LUT_VAR_VALUE 4f Current value of variable requested in the LUT_VAR_ID

CMD_READ_RC_INPUTS (#100) - answer to the requested RC sources

RC_VALIN]

Type Min

2s*N

-16384

Max
16384

Possible values, remarks

Values for each RC source in order as requested in the
incoming CMD_READ_RC_INPUTS command.
A special value RC_UNDEF=-32768 returned if signal is absent.

‘,‘ © Basecamelectronics® 2024

40

Real-time state monitoring and diagnostics SimpleBGC32 Serial API protocol specification

CMD_READ_STATE_VARS (#111) - result of reading system persistent state variables,
cumulative statistics and maintenance data

(min. frw.ver. 2.68b7, “Extended” family only)

Name Type Min Max Possible values, remarks
STEP_SIGNAL_VALI6] 6*1u Step signal current value
SUB_ERROR 1u Last code of EMERGENCY_STOP error
MAX_ACC 1u Max. registered acceleration
Units: 1/16G
WORK_TIME 4u Total working time
Units: seconds
STARTUP_CNT 2u Counter of system starts
MAX_CURRENT 2u Max. registered instant current consumption
Units: mA
IMU_TEMP_MIN 1u IMU temperature
IMU_TEMP_MAX 1u Units: C
MCU_TEMP_MIN 1u Main MCU temperature
MCU_TEMP_MAX 1u Units: C
SHOCK_CNT[4] 4*1u shock detector counter for specified thresholds
ENEGRY_TIME 4u Time collecting consumed energy statistics
Units: seconds
ENERGY 1f Total consumed energy
Units: Watt*hour
AVG_CURRENT_TIME 4u Time collecting average current statistics
Units: seconds
AVG_CURRENT 1f Average current
Units: A
RESERVED 152b Zero bytes to keep payload size exactly 192 bytes

CMD_SET_DEBUG_PORT (#249) - receive serial APl commands from all other ports for a
debugging

This is for debug mode initiated by the CMD SET DEBUG PORT outgoing command.

Name Type Min Max Possible values, remarks
TIME_MS 2u Time since system start, in milliseconds
PORT_AND_DIR 1u bits0..6: port index
bit7: direction
CMD_ID 1u Command id
PAYLOAD Payload, variable length

‘,‘ © Basecamelectronics® 2024 41

Run-time gimbal parameters SimpleBGC32 Serial API protocol specification

Run-time gimbal parameters

Requests

CMD_SET_ADJ_VARS_VAL (#31) - Update the value of selected parameter(s).

This command is intended to change parameters on-the-fly during system operation, and does not save
parameters to EEPROM.

To save updated parameters permanently, use the CMD_SAVE_PARAMS_3 command.

The same command is also used as an outgoing command to read the value of adjustable variable(s).

Name Type Min Max Possible values, remarks
NUM_PARAMS 1u 1 40 Number of parameters in command

PARAM<N>_ID 1u ID of parameter. See the Appendix B: Run-time parameters definition
(adjustable variables) for a list of available variables.

PARAM<N>_VALUE 4b Value depends on type of parameter.

Values are packed according to C-language memory model,
little-endian order. 1- or 2-byte types converted to 4-byte using
C-language type conversions. Floats are packed according to
IEEE-754.

(1..NUM_PARAMS)

for N

On success, confirmation is sent in response.

CMD_GET_ADJ_VARS_VAL (#64) - Query the actual value of selected parameter(s).

This command requests actual values of adjustable parameters.
On success, CMD_SET ADJ VARS VAL is sent in response.

Name Type Min Max Possible values, remarks

NUM_PARAMS 1u 1 40 Number of parameters in command

» | PARAM<N>_ID 1u ID of parameter. See the Appendix B: Run-time parameters definition
% (adjustable variables) for a list of available variables.
él

=

)

z

W

z

S

CMD_READ_ADJ_VARS_CFG (#43) - request configuration of mapping of control inputs to
adjustable variables

CMD_READ_ADJ_VARS_CFG incoming command is sent in response.

‘,‘ © Basecamelectronics® 2024 42

Run-time gimbal parameters SimpleBGC32 Serial API protocol specification

CMD_WRITE_ADJ_VARS_CFG (#44) - writes configuration of mapping of control inputs to
adjustable variables

Data format is the same as in corresponding CMD_READ_ADJ_VARS_CFG incoming command.
On success, confirmation is sent in response.

CMD_SAVE_PARAMS_3 (#32) - Saves current values of parameters linked to adjustable
variables, to EEPROM

Use this command to save parameters updated by the "Adjustable Variables", permanently to EEPROM. For
parameters that are split to profiles, only the current profile slot is updated.

Type Min Max Possible values, remarks
ADJ_VAR_ID_1 1u*N frw.ver. 2.68b9+
ADJ VAR ID 2 Optional array of IDs of adjustable variables to save. If not

specified, save all active adjustable variables.
ADJ_VAR_ID_N

CMD_ADJ_VARS_STATE (#46) - request the state of adjustable variable in the given trigger
and analog slots.

Firmware ver, prior to 2.62b5:
Name Type Min Max Possible values, remarks

TRIGGER_SLOT u |0 9
ANALOG_SLOT u |0 14

Firmware ver. 2.62b5+:

Name Type Min Max Possible values, remarks
TRIGGER_SLOT u |0 9 "Trigger" slot number to show its state
ANALOG_SRC_ID 2u Signal source to show its value
ANALOG_VAR_ID 1u Variable ID to show its value
LUT_SRC_ID 2u Signal source to show its value
LUT_VAR_ID 1u Variable ID to show its value
Responses

CMD_SET_ADJ_VARS_VAL (#31) - receive the values of adjustable variables.

Sent as an answer on CMD GET ADJ VARS VAL. See corresponding outgoing command for format
description: CMD SET ADJ VARS VAL

CMD_READ_ADJ_VARS_CFG (#43) - receive the configuration for adjustable variables

There are 10 “trigger” slots and 15 “analog” slots. “Trigger” type is used to execute action depending on the

',‘ © Basecamelectronics® 2024 43

Run-time gimbal parameters SimpleBGC32 Serial API protocol specification

RC signal level, where full range is split into 5 levels. “Analog” type is used to adjust parameter by RC
signal. MIN_VAL and MAX_VAL specify a working range, that is mapped to a native range of particular
parameter.

Name Type Min Max Possible values, remarks
§ TRIGGER_SRC_CH 1u See the RC_MAP_ROLL parameter definition
E’ TRIGGER_ACTIONI[5] |1u*5 See the CMD_EXECUTE_MENU command for a list of
5 available actions
»
ANALOG_SRC_CH 1u See the RC_MAP_ROLL parameter definition
VAR_ID 1u bits0..6: the ID of variable. Full list of adjustable variables is

given in the Appendix B

bit7: if set, the value is processed as a "multiplier" for a given
variable. (frw. ver. 2.62b6+)

slot = (1..15)

MIN_VAL 1u
MAX_VAL 1u
RESERVED 8b

‘,‘ © Basecamelectronics® 2024 44

IMU correction and diagnostic

SimpleBGC32 Serial API protocol specification

IMU correction and diagnostic

Requests

CMD_HELPER_DATA (#72) - provide helper data for AHRS system

Use this command to increase precision of attitude estimation under certain conditions like curved or
accelerated motion. More information in the Appendix C: Providing external reference attitude/heading information from

UAV

Legacy format (prior to frw. ver. 2.60):

Name Type Min Max Possible values, remarks
FRAME_ACC[3] 2s*3 |- - Linear acceleration of the frame, [X,Y,Z] components in a
coordinate system COORD_SYS_GROUND_YAW_ROTATED (see
description below).
Units: 19/512 = 0,019160156 m/s?
FRAME_ANGLE_ROLL 2s |-32768 | 32767 |Inclination of the outer frame in a given coordinate system.
FRAME_ANGLE_PITCH 2s Pass zero values to not use this information.
Units: 0,02197265625 degree.

Extended format (frw. ver. 2.60+):

Name Type Min Max Possible values, remarks

FRAME_ACC[3] 2s*3 |- - Linear acceleration of the frame with the inverted sign. Vector
with the [X,Y,Z] components in a given coordinate system (see
FLAGS below).
Units: 19/512 = 0,019160156 m/s?

FRAME_ANGLE_ROLL 2s -32768 |32767 |Inclination of the outer frame in the

FRAME_ANGLE_PITCH 2s COORD_SYS_GROUND_YAW_ROTATED. These angles are used only
in encoders or 2™ IMU are not installed to roughly estimate the
motor angles.
Pass zero values to not use this information.
Units: 0,02197265625 degree.

FLAGS 1u bits 0..2: coordinate system where FRAME_ACC and

FRAME_SPEED vectors are defined.
COORD_SYS_GROUND_YAW_ROTATED = 1

Global system rotated with the camera over Z axis: Y-axis is
aligned with the main IMU's Y-axis (points forward), X-axis
points right, Z-axis points down (nadir)

COORD_SYS_GROUND = 2

END Global system: X-axis matches true East ,Y-axis matches
true North, Z-axis matches nadir.

Notes: END system differs from commonly used NED system.
To convert, swap X and Y values in vectors.

A magnetometer sensor should be installed and calibrated to
give global reference for the main IMU. If no magnetometer
present, Y-axis points arbitrary direction, so it is required to
additionally provide the FRAME_HEADING parameter and use
encoders to allow synchronization of the local coordinate
system to earth-related system.

“ © Basecamelectronics® 2024

45

SimpleBGC32 Serial API protocol specification

COORD_SYS_FRAME = 3
Coordinate system linked to the gimbal's outer frame: Y-axis
matches frame's "forward", X-axis matches frame's "right", Z-
axis matches frame's "down". For example, having an
accelerometer-measured vector acc_raw in NED system in
units m/s/s, compensate it for the gravity acc = acc_raw -
acc_1g and convert it the following way:
FRAME_ACC[@] = -acc.y*52.19164
FRAME_ACC[1] = -acc.x*52.19164
FRAME_ACC[2] = -acc.z*52.19164

Note: one of the following conditions should be satisfied:
- a 2™ frame-mounted IMU and YAW encoder in the regular
firmware

bits 3..5: reserved

bit6: if set, the FRAME_HEADING is assumed to be computed
in Euler order “ROLL-PITCH-YAW” rather then default “PITCH-
ROLL-YAW”

(frw. ver. 2.70b7+)

bit7: Use FRAME_HEADING parameter as a heading
reference to align the IMU's local coordinate system to earth-
related system, or to compensate gyro drift by the YAW axis if
frame is fixed. If bit is not set, FRAME_HEADING is ignored
(frw. ver. 2.62b7+)

FRAME_SPEEDI[3]

2s*3

Angular speed of the frame, [X,Y,Z] components in a given
coordinate system. Helps to increase a precision of stabilization
in systems w/out encoders or 2™ IMU. Pass zero values to not
use this information.

Units: 0,06103701895 degree/sec

FRAME_HEADING
(frw. ver. 2.62b7+)

2s

-16384

16384

Angle of the frame relative to the North by the YAW axis.

On first occurrence, YAW angle will be updated, taking into
account the position of the main IMU relative to a frame. Then it
will be used only as a reference for a gyro drift correction. If
frame is fixed, it's enough to set this value once. But if frame is
moving, it should be measured and update with the high enough
rate (10-50Hz) to reflect the frame rotation.

Remarks:

*bit7 in the FLAGS parameter should be set to use this value.
*Provided angle may be wrapped to +-180 degrees or 0..360
degrees.

*Special value of 32767 stops the use of this reference and
makes IMU heading unreferenced.

*’Heading angle” is YAW angle expressed in Euler order PITCH-
ROLL-YAW. Starting from firmware 2.70b7+, the FLAGS : bit6
can change it to “ROLL-PITCH-YAW”.

* This correction has a priority compared to the correction
received from the external IMU, if it's connected.

Units: 0,02197265625 degree.

RESERVED

1b

For the lateral acceleration compensation, it is enough to provide only the FRAME_ACC data, leaving all
other fields empty. Feed fresh ACC and angles data with the pretty low rate 10-20 Hz, because strong low-
pass filter is applied internally. If the FRAME_SPEED data need to be provided, data rate should be much

higher, up to 125 Hz.

ﬁ‘ © Basecamelectronics® 2024

46

IMU correction and diagnostic SimpleBGC32 Serial API protocol specification

How to ensure that the ACC correction is applied properly, on the bench:

1.

Temporarily set the "ACC LPF" filter parameter in the GUI to 5-10Hz — it will remove noise but keep
fast reaction of the "IMU_G_ERR" variable in the "Monitoring" tab of the GUI. This variable shows
the distance between the estimated gravity vector and vector, measured by accelerometer.

Without motion, when you tilt the frame, the FRAME_ACC vector should have all components close
to zero. The IMU_G_ERR variable should be near zero, too.

Without correction, when you shake gimbal, you see that the IMU_G_ERR changes significantly.
With the correction applied, when you shake gimbal, IMU_G_ERR always stays near zero - it means
that the external accelerations are compensated.

When you rotate frame relative to earth in all directions, or rotate camera relative to frame, the 3™
test is still passed correctly — it means that the ACC correction vector is translated to the main IMU
sensor properly.

CMD_AHRS_HELPER (#56) - send or request attitude of the IMU sensor.

Use this command to provide a reference or replace the attitude estimated by the internal IMU sensor, by the
attitude from a high-grade external IMU. The reasonable rate of sending this command is 20-50 Hz,
maximum is 125 Hz. More information in the Appendix C: Providing external reference attitude/heading information from

UAV

Name
MODE

Type Min Max Possible values, remarks

1u bit0: 0 — get, 1 — set.

or bit1: location of the source IMU: 0 — camera platform, 1 — frame
2u** (modified by bits 8,9)

bit2: if set, use as a reference only (any internal reference, if
present, will be disabled). If not set, replaces the attitude and
heading estimated by the internal sensor (both Z1 and H1 must
be provided).
bit3: if set, translate from camera to frame (or back) and use as
a reference.
bitd4,5: selectively apply the correction by the provided Z and H
vectors:

00 or 11 - use both Z and H vectors

01 - use Z vector only.

10 - use H vector only

for frw.ver. 2.69b5+:

bit6,7: selectively translate the correction (bit3 should be set):
00 or 11 - translate both vectors
01 - translate Z vector only
10 - translate H vector only.

for 2-byte MODE (optional in frw.ver. 2.69b5+)**:
bits8,9: position of the reference system for the frame IMU
correction:

00 — the same as frame IMU

01 - “on the frame”

10 — “pbelow outer” (next to the outer motor in motor

order counting from the frame)
bit10 (frw.ver.2.70b1+): disable external correction for the given
IMU and vectors (specified in bits 1,4,5). Restore internal
correction, if possible (using accelerometer for Z1,
magnetometer for H1).

REMARKS ON FLAGS

Bit1 encodes the position of the external source of
attitude/heading information. When flag is set and frame IMU is

“ © Basecamelectronics® 2024 47

SimpleBGC32 Serial API protocol specification

not enabled, it counts “on the frame”. If frame IMU is enabled, it
counts “in the frame IMU position”, but can be modified by flags
8,9.

If Bit2 is set, attitude/heading is applied as a reference and the
strength of correction depends on the parameters “Gyro trust”
(inverted rule) and “Heading correction factor”. The provided
attitude and heading data replace the internal accelerometer
and magnetometer sensor data, respectively.

Bit3 is taken into account only if all motor angles are known
from encoders or may be estimated using other ways. Bit 3
should be set if reference IMU is located on the frame and you
need to correct main IMU located on the stabilized platform.

Bits 4,5 may be used to selectively correct/replace only H
(heading) or Z (attitude) vectors. For example, you can leave Z
corrected by the internal accelerometer, and correct only H
(heading).

Bits 8,9 may be useful if system has the frame IMU enabled and
the source of a reference attitude is located in a different
position. For example, if the frame IMU is “below outer motor”
but the external IMU is mounted on the gimbal's frame, before
applying the correction we convert it to the coordinate system,
linked to the frame IMU.

Below are some useful combinations of flags as an example:
GET MODES

0x00 - request the main IMU attitude
0x02 - request the frame IMU attitude

SET MODES

0x01 - use as a camera attitude (replaces the attitude
estimated by the main IMU).

0x03 — replace the frame IMU attitude (if frame IMU is not
enabled, use as gimbal's frame attitude).

0x05 - use as a reference for the main IMU.

0x07 - use as a reference for the frame IMU.

0x0B — replace the frame IMU attitude/heading (or use as a
gimbal's frame attitude if frame IMU is not enabled), translate to
the camera coordinates and use as a reference for the main
IMU.

0x0F — use as a reference for the frame IMU, translate to the
camera coordinates and use as a reference for the main IMU.
0x2F — the same as above, but correct only a heading (use H-
vector only).

0x012F — external IMU is located on the frame, gimbal's frame
IMU is located “below outer motor”. After translation, use
heading (H-vector) as a reference for the frame IMU and for the
main IMU.

Z_VECT[3] 4f*3 |-1.0f 1.0f Unit vector that points down in END coordinate system (North-
East-Down)* with the origin linked to the camera (MODE.bit1=0)
or to the frame IMU or frame (MODE.bit1=1)

H_VECTI[3] 4f*3 | -1.0f 1.0f Unit vector that points towards North in END coordinate system

(North-East-Down)* with the same origin

* Note that we use system END that differs from commonly used NED. See Appendix D: Coordinate system conversions
** MODE may be 1u or 2u for the extended flags supported starting from frw. ver. 2.69b5

'ﬁ‘ © Basecamelectronics® 2024

48

IMU correction and diagnostic SimpleBGC32 Serial API protocol specification

CMD_GYRO_CORRECTION (#75) - correct the gyroscope sensor's zero bias manually

Name Type Min Max Possible values, remarks
IMU_TYPE 1u 0 — main IMU, 1 — frame IMU
GYRO_ZERO_CORRJ[3] 2s*3 Zero offset for each axis in order X, Y, Z
Units: 0.001 gyro sensor unit
GYRO_ZERO_HEADING_C |2s Zero offset for global Z axis to correct a heading only. This
ORR correction is distributed to all axes automatically.
Units: 0.001 gyro sensor unit

Responses

CMD_AHRS_HELPER (#56) - current attitude in vector form.

Name Type Min Max Possible values, remarks

Z VECT[3] 4f*3 | -1.0f 1.0f Unit vector that points down in END coordinate system (North-
East-Down)*

H_VECTI[3] 43 | -1.0f 1.0f Unit vector that points towards North in END coordinate system*

* Note that we use system END that differs from commonly used NED. See Appendix D: Coordinate system
conversions

AHRS_DEBUG_INFO - information about the AHRS state
(frw.ver. 2.66+)

It's not a separate command. This structure is included as a part of other commands. Total size is 26 bytes.

Name Type Min Max Possible values, remarks
MAIN_IMU_REF_SRC 1u Encodes the source of the reference information for the main
IMU:

bits 0..2: attitude reference source

bits 3..5: heading reference source

bit6: if set, internal sensor is connected and used; otherwise,
AHRS information is set externally

bit7: if set, the processing of this IMU is enabled

Possible values for reference sources:

REF_NO = @ - no reference

REF_INTERNAL = 1 - reference is provided by the internal
sensor like accelerometer or magnetometer

REF_EXTERNAL = 2 -reference is set externally by the serial
API or external IMU

REF_TRANSLATE = 3 - translate reference from other IMU
(frame -> main, main -> frame)

FRAME_IMU_REF_SRC 1u The same structure as for the main IMU.

‘,‘ © Basecamelectronics® 2024 49

IMU correction and diagnostic

SimpleBGC32 Serial API protocol specification

MAIN_IMU_Z_REF_ERR 1u Error between the reference defined by the
MAIN_IMU_REF_SRC, and the estimated attitude
Units: 0.1°

MAIN_IMU_H_REF_ERR 1u Error between the reference defined by the
MAIN_IMU_REF_SRC, and the estimated heading
Units: 0.1°

FRAME_IMU_Z_REF_ERR |1u Error between the reference defined by the
FRAME_IMU_REF_SRC, and the estimated attitude
Units: 0.1°

FRAME_IMU_H_REF_ERR |1u Error between the reference defined by the
FRAME_IMU_REF_SRC, and the estimated heading
Units: 0.1°

EXT_IMU_STATUS 1u bits 0..2 for status:
STATUS_DISABLED = ©
STATUS_NOT_CONNECTED = 1
STATUS_UNKNOWN = 2
STATUS_ERROR = 3
STATUS_BAD = 4
STATUS_COARSE = 5
STATUS_GOOD = 6
STATUS_FINE = 7
(values 4..7 encode the quality of the attitude estimation)
bits 3..7 for flags:
STATUS_FLAG_BAD_MAG = (1<<6) = 0x40
STATUS_FLAG_NO_GPS_SIGNAL = (1<<7) = 0Ox80

EXT_IMU_PACKETS_RECE |2u |0 65535

IVED_CNT

EXT_IMU_PARSE_ERR CN |2u |0 65535

T

EXT_CORR_H _ERR 1u Difference between the externally referenced heading and the
current heading
Units: 0.1°

EXT_CORR_Z_ERR 1u Difference between the externally referenced attitude and the
current attitude
Units: 0.1°

RESERVED 13b

CMD_EXT_IMU_DEBUG_INFO (#106) - debug information for the external IMU sensor

(frw.ver. 2.66+)

Name Type Min Max Possible values, remarks

AHRS_DEBUG_INFO 26b See the AHRS DEBUG INFO specification

DCM 9*4f | -1.0f 1.0f Rotation matrix (DCM) received from the external IMU and
converted to the (END) (East-North-Down) coordinates.

ACC_BODY 3*4f Linear acceleration (with the gravity vector subtracted) in
sensor's local coordinates.

“ © Basecamelectronics® 2024

50

Controlling gimbal movements SimpleBGC32 Serial API protocol specification

Controlling gimbal movements

Requests

CMD_CONTROL (#67) - controls gimbal movement

Type Min Max Possible values, remarks

Legacy format: mode is common for all axes
CONTROL_MODE 1u Bits 0..3 for mode, bits 4..7 for flags.

Modes:

MODE_NO_CONTROL=0
Finish serial control and restore normal RC control.

MODE_IGNORE=7 (frw.ver.2.70b4)
Ignore this axis and all parameters, keeping it in the
actual state

MODE_SPEED=1
Gimbal travels with the given speed in the Euler
coordinates until the next CMD_CONTROL command
comes. Given angle is ignored.

MODE_ANGLE=2
MODE_ANGLE_SHORTEST=8 (frw.ver.2.70b7)

Gimbal travels to the given Euler angle with the

automatically calculated speed according to the

acceleration limit. The nominal speed may be provided
by the SPEED parameter. Speed is additionally
attenuated near target to keep the control smooth (if

CONTROL_FLAG_TARGET_PRECISE is not set).

* MODE_ANGLE : gimbal travels to the new absolute
setpoint angle, making multiple turns if needed,
but limiting a rotation by +720° per command
due to limited 16bit parameter range.

* MODE_ANGLE_SHORTEST: gimbal travels to the point
on a 360° circle by the shortest path, taking into
account the software limits of encoders when
choosing a direction (so it can go by the long
path if the short path is blocked)

MODE_SPEED_ANGLE=3
Gimbal travels with the given SPEED parameter.
Additionally, controller keeps the given angle and fixes
the accumulated error by adjusting the actual speed in
a direction of error minimization, defined by the “Outer
P” GUI parameter. This error may appear because the
estimated target angle (integral of SPEED by dt) may
differ from the actual target angle, because the actual
target speed is internally filtered by LPF and
acceleration limit, if they are enabled. This mode
should be chosen when it's required to exactly repeat
the rotation of the user-operated device (like joystic or
wheel), precisely tracking its speed and angle.

MODE_RC=4
The ANGLE parameter is used as RC signal and
overrides any other signal source, assigned to this

“ © Basecamelectronics® 2024 51

SimpleBGC32 Serial API protocol specification

axis. Normal working range is -500..500. A special
value -10000 encodes a "signal lost" condition.
The flag CONTROL_FLAG_AUTO_TASK can affect this
mode (see below).

Prior to 2.61 frw. ver., 'SPEED' parameter is ignored.

MODE_RC_HIGH_RES=6 (frw. ver. 2.66b2)

The same as the MODE_RC, but the range of the
ANGLE parameter has better resolution:
-16384..16384. A special value -32768 encodes a
"signal lost" condition.

MODE_ANGLE_REL_FRAME=5

Flags:

First, the neutral point of a camera relative to a frame is
found in the Euler coordinates for a given axis. Than,
the given angle (in £360° range) is added to this point,
and camera travels to it. Note that the given angle does
not relate to a particular motor, it relates to global Euler
angles!

CONTROL_FLAG_AUTO_TASK=(1<<6)

Firmware version: 2.62b7

Applicable for: MODE_ANGLE, MODE_ANGLE_SHORTEST,
MODE_ANGLE_REL_FRAME

The task is processed with the speed and acceleration
configured for automated tasks. If the SPEED parameter
is provided, it's used instead. When all target angles
are reached with the 1-degree tolerance, confirmation
is sent: CMD_CONFIRM(CMD_CONTROL, 1).

Use this flag to move gimbal to a certain position as
fast as possible, and receive confirmation when the
target is reached. If system can't process the planned
trajectory for some reasons, motion will be interrupted
after 10-second timeout.

CONTROL_FLAG_FORCE_RC_SPEED=(1<<6)

Firmware version: 2.62b7

Applicable for: MODE_RC

This flag forces a control in the "SPEED" mode, with
the dead-band, trimming and inversion settings are
NOT applied to the provided RC signal, but the LPF,
Expo curve and ACC limiter are still applied. Use this
flag to control gimbal from remote applications, where
signal is well-defined and you need to have a direction
of rotation that does not depend on gimbal's "Inverse"
and "Mode" parameters.

CONTROL_FLAG_HIGH_RES_SPEED=(1<<7)

Firmware version: 2.60b0

Applicable for: all modes

Speed units changed to 0.001 deg/sec for extremely
slow motion (like timelapse shooting)

CONTROL_FLAG_TARGET_PRECISE=(1<<5)

Firmware version: 2.70b1

Applicable for: MODE_ANGLE, MODE_ANGLE SHORTEST,
MODE_ANGLE_REL_FRAME

If this flag is set, the speed is not decreased in a
vicinity of target. It allows to get more predictive speed
profile for the motion trajectory. If not set, actual speed
is decreased near target to smooth over the jerks when

#‘ © Basecamelectronics® 2024

52

SimpleBGC32 Serial API protocol specification

distance to target is small and target is updated
frequently by small steps.

CONTROL_FLAG_MIX_ FOLLOW=(1<<4)
Firmware version: 2.70b5
Applicable for: MODE_SPEED, MODE_ANGLE,
MODE_ANGLE_SHORTEST
If this flag is set, the follow mode is not overridden, but
is mixed with the commanded motion, like it happens
for the regular RC control in SPEED or ANGLE mode.
If this flag is not set, the commanded motion
completely overrides the follow control for this axis.

Extended format (firmware ver. 2.55b5+): mode is set independently for each axes
CONTROL_MODE[3] 1u*3 see definition above

The remaining part is common for all formats

SPEED 2s - - Speed of rotation. Overrides the speed settings in the GUI

- - Notes:

» If the acceleration limit is enabled in the settings, the
actual speed is filtered by it for all modes.

* Additionally, the actual speed is decreased near target
to prevent step-wise motion, unless flag
CONTROL_FLAG_TARGET_PRECISE is set.

MODE_ANGLE, MODE_RC, MODE_ANGLE_REL_FRAME:

* the value is always positive and may be setto 0 - in
this case, speed is taken from the RC settings (or from
the “Automated tasks” settings if
CONTROL_FLAG_AUTO_TASK is set):

SPEED = settings.RC_SPEED*16

(1.3)

MODE_SPEED, MODE_SPEED ANGLE:
» the values is signed (negative for opposite direction)

axis

Units: 0,1220740379 deg./sec.
0.001 deg./sec., if CONTROL_FLAG_HIGH_RES_SPEED is set

ANGLE 2s -32768 | 32767 | Depends on the MODE parameter:

* MODE_ANGLE, MODE_SPEED_ANGLE: encodes the
absolute target angle. If CONTROL_FLAG_MIX_FOLLOW
is set, angle is considered relative to the point where
mode starts.

* MODE_SPEED: ignored

* MODE_RC: encodes RC signal in range -500..500

* MODE_RC_HIGH_RES: encodes RC signal in range
-16384..16384

Units: 0,02197265625 degree.

Notes:

* When CMD_CONTROL comes first time, it overrides the regular RC or Follow mode control, unless
CONTROL_FLAG_MIX_FOLLOW is set. To switch back to a normal mode, send this command with the MODE=0
for all axes, and all data set to zeros. All parameters that were changed by the CMD_CONTROL_CONFIG, will be
restored to their default values.

Behavior is different if CONTROL_FLAG_AUTO_TASK is set: when the commanded motion is finished, system
returns to a normal mode automatically.

* The optimal rate of sending this command is 50..125 Hz. If the rate of CMD_CONTROL command is lower, use a
low-pass filtering to prevent step-wise response. It can be set by the command CMD_CONTROL_CONFIG

'ﬁ‘ © Basecamelectronics® 2024 53

Controlling gimbal movements SimpleBGC32 Serial API protocol specification

separately for SPEED and ANGLE parameters, with the rule: the lower the rate, the more filtering is required.

» Confirmation is sent on each CMD_CONTROL command unless CONTROL_CONFIG_FLAG_NO_CONFIRM is set.
Additional confirmation is sent when the target angle is reached, if CONTROL_FLAG_AUTO_TASK is set.

* Automated tasks has greater priority then CMD_CONTROL. For example, executing menu command "Level
ROLL to horizon" overrides CMD_CONTROL for ROLL axis until task is finished.

* The ANGLE rage is limited by £720°. It's possible to get rid of this limitation by sending multiple commands in
a sequence: when gimbal approaches the current setpoint, send a new setpoint with the ANGLE computed
using natural C++ integer arithmetics with wrap-around overflow. Example: to make 3 full turns (1080°) the first
command sends axis to 720° (ANGLE=32767) and the second command sends it to 1080° (ANGLE=-16384,
which is computed as 32767+16384 in int16_t variable).

Starting from firmware 2.70b8, it's possible to send several commands in sequence immediately one after
another (the only condition is that the distance between two setpoints does not exceed 720° or 32768), or use
CMD_CONTROL EXT were 20bit ANGLE parameter does not have such limitation and allows to command a
rotation up to 4096 full turns in a single command.

* The ANGLE parameter doesn't always match the TARGET_ANGLE variable (reported in CMD_ANGLES,
CMD_REALTIME_DATA and others), which means “the setpoint angle that gimbal should keep right now”.
Only after the motion sequence is finished, they match (excepting cases when CONTROL_MODE and flags
change the resulting setpoint before the motion starts, like “travel shortest distance” or “mix with the follow
mode”).

* This command is developing permanently: new modes and flags are added and behavior is improved, so old
firmware versions may handle this mode differently then described in this document.

e See the Appendix A for a source code examples

CMD_CONTROL_EXT (#121) - controls gimbal movement, extended version
(frw. ver. 2.68+)

An extended version of CMD_CONTROL. It allows to omit unused fields to save the bandwidth. The content
of the command depends on enabled bits in DATA_SET parameter.

Name Type Min Max Possible values, remarks

DATA_SET 2u Defines which data is provided in this command with a variable
length. Bits are grouped by axes [0..4], [5..9], [10..14]
In each group:

bite: SPEED parameter is given

bitl: ANGLE parameter is given

bit2: use 20 bit resolution for ANGLE

bit3,4: reserved

CONTROL_MODE 2u See the CONTROL MODE parameter in CMD_CONTROL.
If neither SPEED or ANGLE bits are enabled, the
CONTROL_MODE parameter should be omitted for this axis

(1..3)

(2]
=3
© | SPEED 2s See the SPEED parameter in CMD_CONTROL
ANGLE 2s See the ANGLE parameter in CMD_CONTROL
4s

If bit2 in corresponding DATA_SET group is set, ANGLE is
encoded as 32-bit signed value with the resolution 20 bits per
turn. Otherwise, it's 16-bit signed value with the resolution 14
bits per turn.

‘_‘ © Basecamelectronics® 2024 54

Controlling gimbal movements

SimpleBGC32 Serial API protocol specification

‘ Units: 0,00034332275390625 or 0,02197265625 degrees

Confirmation (CMD_CONFIRM) is sent in response, unless it's disabled in CMD_CONTROL_CONFIG.
Error (CMD_ERROR) is sent in response if format is incorrect (for example, payload size differs from

expected).

Examples (payload only):

00 1C 02 00 F4 01 00 00 30 00 — rotate YAW to 1080° (MODE_ANGLE, 20bit), SPEED=61°/sec
00 OC 02 00 F4 01 00 10 — rotate YAW to 90° (MODE_ANGLE,14bit), SPEED=61°/sec
42 08 02 00 00 00 02 00 00 00 02 00 00 00 — move all axes to 0° with the default speed

CMD_CONTROL_CONFIG (#90) - configure the handling of CMD_CONTROL command

(frw. ver. 2.61+)

Name Type Min Max Possible values, remarks
TIMEOUT_MS 2u 0 65535 | 0 - disable timeout
>0 - if no CMD_CONTROL command will come in a given time

on any channel, serial control will be finished.
Default value after startup is 0 (no timeout).
Units: ms

CH1_PRIORITY 1u*5 |0 255 Channels are counted in order: UART1, RC_SERIAL, UART2,

CH2_PRIORITY USB_VCP (how they are named in the User Manual). THIS_CH

CH3 PRIORITY means current port, where command is sent.

- Values:
CH4_PRIORITY -
. 0 - do not change the priority

THIS_CH_PRIORITY 1..255 - set the priority of a given channel. In case of
concurrent CMD_CONTROL commands, they will be accepted
only on a channel that has higher or equal priority than others.
Default value is O for all channels after startup.

® |ANGLE_LPF 1u 0 15 LPF factor for filtering the '"ANGLE' parameter in the modes

= "MODE_ANGLE", "MODE_SPEED_ANGLE". Helps to keep

I smooth control even if update rate is slow.

(2]

=3

& Default value is 0 — no filtering is applied.

SPEED_LPF 1u 0 15 LPF factor for filtering the 'SPEED' parameter in the modes
"MODE_SPEED", "MODE_SPEED_ANGLE". Helps to keep
smooth control even if update rate is slow.

Default value is 0 — no filtering is applied.

RC_LPF " 1u 0 255 LPF factor for filtering RC signal in the mode "MODE_RC",
“‘MODE_RC_HIGH_RES”. Helps to keep smooth control even if
update rate is slow.

0 — do not change.
ACC_LIMIT " 2u |0 65535 | Acceleration limiter filter, applied to speed profile in all control
(frw.ver. 2.70b1) modes.
0 — do not change
>0 — it overrides the default value from system settings.
Units: degrees/sec?
JERK_SLOPE " u |0 255 The rate of change of an acceleration, forming S-curve in a

(frw.ver. 2.70b8+)

speed profile, increasing the smoothness of control. This
parameter defines the time required to rise the acceleration
from zero to a nominal value.

“ © Basecamelectronics® 2024

55

Controlling gimbal movements SimpleBGC32 Serial API protocol specification

Special values:
0 — ignore this parameter
1 — disable jerk slope function

Units: 20ms

RESERVED 1b

RC_EXPO_RATE " 1u 0 100 Exponential curve for filtering RC signal in the mode
"MODE_RC".
0 — do not change

FLAGS " 2u FLAG_NO_CONFIRM=(1<<®)

(frw.ver. 2.66b2)

If set, controller does not send confirmation on each
CMD_CONTROL command.

FLAG_SERVO_MODE_ENABLE=(1<<1)
FLAG_SERVO_MODE_DISABLE=(1<<2)

(frw.ver. 2.72b0)

Enable or disable servo mode — in which the commanded
rotation is done around motors' axes rather than Euler axes;
ANGLE is relative to the calibrated neutral point for each motor.

EULER_ORDER" 1u 0: don't change

(frw.ver. 2.72b0) 1: Cam - PITCH - ROLL - YAW

2: Cam - ROLL - PITCH - YAW

3: Cam - PITCH(M) - ROLL — YAW (M)
4: Cam - ROLL - PITCH(M) - YAW(M)
5: Cam - YAW - ROLL — PITCH

10: Screen-related X,Y,Z

RESERVED 9b

Confirmation is sent on success.

" All changes in these parameters valid only while serial control is active. When serial control finishes, the
GUI-configured values are restored.

CMD_API_VIRT_CH_CONTROL (#45) - update a state of 32 virtual channels.

Named as “API VIRT CHxx” in the GUI; may be assigned as RC source to any task.

Type Min Max Possible values, remarks
API_VIRT_CH1 2s*3 |-500 500 Value may go slightly outside these limits.
2 Use a special value “-10000” to mark that channel has
APl VIRT CH32 “undefined” state (its treated as “signal lost” like with the regular
- - RC inputs)

* Starting from firmware 2.70b5, any number of channels (1..32) may be provided, to save bandwidth by
omitting unused channels.

CMD_API_VIRT_CH_HIGH_RES (#116) - update a state of 32 virtual channels
(frw.ver. 2.68b7+)

Named as “API_VIRT_CHxx” in the GUI; may be assigned as RC source to any task.
This command is similar to CMD _API VIRT CH CONTROL, excepting it has higher resolution.

Type Min Max Possible values, remarks

API_VIRT_CH1 16384 | Value may go slightly outside these limits.

“ © Basecamelectronics® 2024 56

SimpleBGC32 Serial API protocol specification

API_VIRT _CH32*

Special value -32768 sets channel to undefined state (input is
ignored)

* Any number of channels (1..32) may be provided, to save bandwidth by omitting unused channels.

ﬂ‘ © Basecamelectronics® 2024

57

Miscellaneous commands SimpleBGC32 Serial API protocol specification

Miscellaneous commands

Requests

CMD_RESET (#114) - reset device

Simple format: no parameters. Resets the device without delay and confirmation

Extended format:

Name Type Min Max Possible values, remarks
FLAGS 1u bit0 — if set, CMD_RESET will be sent to the host as a
confirmation.

bit1 — if set, back up some state variables and restore them
after restart:

— motors ON/OFF state

— setpoint angles

— follow mode offset angles

DELAY_MS 2u After confirmation is sent, waits for a given time (in ms) before
reset.

CMD_BOOT_MODE_3 (#51) - enter bootloader mode to upload firmware

Simple format: no parameters. Enters boot mode without delay and confirmation

Extended format:

Type Min Max Possible values, remarks

CONFIRM 1u 0 — no confirmation
1 - command CMD_RESET will be sent back for confirmation

DELAY_MS 2u After confirmation is sent, waits for a given time (in ms) before
reset. External application can free up resources and properly
close the serial connection before controller enters boot mode.

CMD_TRIGGER_PIN (#84) - trigger output pin

Name Type Min Max Possible values, remarks

PIN_ID 1u Triggers pin only if it is not used for input

RC_INPUT ROLL = 1
RC_INPUT_PITCH = 2
EXT_FC_INPUT_ROLL = 3
EXT_FC_INPUT_PITCH = 4
RC_INPUT_YAW = 5

PIN_AUX1 = 16
PIN_AUX2 = 17
PIN_AUX3 = 18

PIN_BUZZER = 32
PIN_SSAT POWER** = 33

',‘ © Basecamelectronics® 2024 58

Miscellaneous commands SimpleBGC32 Serial API protocol specification

** PIN_SSAT_POWER triggers 3.3V power line in the Spektrum
connector (low state enables power)

LOW = © (GND) - pin can sink up to 40mA
HIGH = 1 (+3.3V) - pin can source up to 40mA
FLOATING = 2 (frw. ver. 2.66+)

STATE 1u

Confirmation is sent only if pin is not occupied for other functions and was really triggered.

CMD_MOTORS_ON (#77) - switch motors ON

No parameters. Confirmation is sent in response.

CMD_MOTORS_OFF (#109) - switch motors OFF

Type Min Max Possible values, remarks
MODE (frw.ver. 2.68b7+) 1u

0 — normal mode: turn motors OFF leaving driver in a high
impedance;

1 —"break mode": turns motors OFF leaving driver in a low
impedance;

2 — "safe stop" mode for unbalanced gimbals: reduce power and
wait while all motors stop rotating, then power OFF completely.

Confirmation is sent in response.

CMD_EXECUTE_MENU (#69) - execute menu command

Name Type Min Max Possible values, remarks

CMD_ID 1u MENU_CMD_NO = @
MENU_CMD_PROFILE1l = 1
MENU_CMD_PROFILE2 = 2
MENU_CMD_PROFILE3 = 3

MENU_CMD_SWAP_PITCH

MENU_CMD_SWAP_YAW ROLL = 5

_ROLL = 4

MENU_CMD_CALIB_ACC = 6
MENU_CMD_RESET = 7
MENU_CMD_SET_ANGLE = 8
MENU_CMD_CALIB_GYRO =
MENU_CMD_MOTOR_TOGGLE
MENU_CMD_MOTOR_ON = 11
MENU_CMD_MOTOR_OFF = 12
MENU_CMD_FRAME_UPSIDE_DOWN = 13

9
= 10

MENU_CMD_PROFILE4 = 14
MENU_CMD_PROFILE5 = 15
MENU_CMD_AUTO_PID = 16

MENU_CMD_LOOK_DOWN = 17
MENU_CMD_HOME_POSITION = 18
MENU_CMD_RC_BIND = 19
MENU_CMD_CALIB_GYRO_TEMP = 20
MENU_CMD_CALIB_ACC_TEMP = 21
MENU_CMD_BUTTON_PRESS = 22
MENU_CMD_RUN_SCRIPT1 = 23
MENU_CMD_RUN_SCRIPT2 = 24

‘,‘ © Basecamelectronics® 2024

59

Miscellaneous commands

SimpleBGC32 Serial API protocol specification

MENU_CMD_RUN_SCRIPT3 = 25
MENU_CMD_RUN_SCRIPT4 = 26
MENU_CMD_RUN_SCRIPT5 = 27
MENU_CMD_CALIB_MAG = 33
MENU_CMD_LEVEL_ROLL_PITCH = 34
MENU_CMD_CENTER_YAW = 35
MENU_CMD_UNTWIST_CABLES = 36
MENU_CMD_SET_ANGLE_NO_SAVE = 37
MENU_HOME_POSITION_SHORTEST = 38
MENU_CENTER_YAW_SHORTEST = 39
MENU_ROTATE_YAW 180 = 40
MENU_ROTATE_YAW_186_FRAME_REL
MENU_SWITCH_YAW_188_FRAME_REL
MENU_SWITCH_POS_ROLL_90 = 43
MENU_START_TIMELAPSE = 44
MENU_CALIB_MOMENTUM = 45
MENU_LEVEL_ROLL = 46
MENU_REPEAT_TIMELAPSE = 47

41
42

MENU_LOAD_PROFILE_SET1 = 48
MENU_LOAD_PROFILE_SET2 = 49
MENU_LOAD_PROFILE_SET3 = 50
MENU_LOAD_PROFILE_SET4 = 51

MENU_LOAD_PROFILE_SET5 = 52
MENU_LOAD_PROFILE_SET BACKUP = 53
MENU_INVERT_RC_ROLL = 54
MENU_INVERT_RC_PITCH = 55
MENU_INVERT_RC_YAW = 56
MENU_SNAP_TO_FIXED_POSITION = 57
MENU_CAMERA_REC_PHOTO_EVENT = 58
MENU_CAMERA_PHOTO_EVENT = 59
MENU_MOTORS_SAFE_STOP = 60
MENU_CALIB_ACC_AUTO = 61
MENU_RESET_IMU = 62
MENU_FORCED_FOLLOW_TOGGLE = 63
MENU_AUTO_PID_GAIN_ONLY = 64
MENU_LEVEL_PITCH = 65
MENU_MOTORS_SAFE_TOGGLE 66
MENU_TIMELAPSE_STEP1 67
MENU_EXT_GYRO_ONLINE_CALIB 68
MENU_DISABLE_FOLLOW_TOGGLE 69
MENU_SET_CUR_POS_AS_HOME 70
MENU_STOP_SCRIPT 71
MENU_TRIPOD_MODE_OFF 72
MENU_TRIPOD_MODE_ON 73
MENU_SET_RC_TRIM 74

CMD_AUTO_PID (#35) - Starts automatic PID calibration

(frw. ver. prior to 3.00)

Name Type Min Max Possible values, remarks

PROFILE_ID 1u switch to this profile before start of the calibration and save
result there

CFG_FLAGS 1u AUTO_PID_CFG_ROLL = 1

AUTO_PID CFG_PITCH = 2
AUTO_PID_CFG_YAW = 4
AUTO_PID CFG_SEND GUI = 8
- if set, sends a progress of tuning to the GUI in the
CMD_AUTO_PID after each iteration
AUTO_PID_CFG_KEEP_CURRENT = 16

“ © Basecamelectronics® 2024

60

Miscellaneous commands

SimpleBGC32 Serial API protocol specification

- if set, starts from existing settings. If not set, starts
from zero

AUTO_PID_CFG_TUNE_LPF_FREQ = 32
- if set, tunes LPF filters, too

AUTO_PID CFG_ALL_PROFILES = 64
- if set, updates tuned parameters in all profiles.
Otherwise, updates only the selected profile.

GAIN_VS_STABILITY 1u 255 0 - better stability,
255 - better tracking of a reference
MOMENTUM 1u 255 0 - detect automatically,
1 - low weight and strong motor,
255 - big weight and weak motor
ACTION 1u 0 — start tuning
RESERVED 14b

- On start, a confirmation is sent in the command CMD_CONFIRM(CMD_AUTO_PID).
- When finished, the controller sends a full set of tuned parameters to the GUI (CMD_READ_PARAMS_XX),

for the selected or for all profiles.

- To interrupt currently running auto-tuning process, send this command with zero values in all fields.

CMD_AUTO_PID2 (#108) - Starts automatic PID calibration ver.2

(frw. ver. 3.00+)

Name
ACTION

Type Min

1u

Max Possible values, remarks

ACTION_START=1 start tuning (do not update config in
EEPROM)

ACTION_START_SAVE=2 save config to EEPROM and start
tuning

ACTION_SAVE=3 save config to EEPROM
ACTION_STOP=5 stop tuning

ACTION_READ=6 read config from EEPROM

RESERVED

10b

The following data is required

only for ACTION_START, ACTION_START_SAVE:

CFG_VERSION 1u version 1
AXIS_FLAGS 1u bit0: this axis is enabled
bit1: tune LPF
bits2..3: number of notch filters to tune, 0-3
GAIN 1u 255 stability vs performance ratio
)
= | STIMULUS 1u 255 | stimulus signal strength
1
% EFFECTIVE_FREQ 1u 255 |Effective frequency, Hz
L PROBLEM_FREQ 1u 255 Problematic frequency, Hz
PROBLEM_MARGIN 1u 255 Problematic margin, dB*10
RESERVED 6b
GENERAL_FLAGS 2u bit0: start from current values
bit1: save result to all profiles
“ © Basecamelectronics® 2024 61

Miscellaneous commands SimpleBGC32 Serial API protocol specification

bit2: tune gain only
bit3: reserved
bit4: auto-save

STARTUP_CFG 1u Automatically run at system startup
0 - Disabled

1 - Tune gain only

2 - Tune all parameters

RESERVED 22b

Confirmation is sent immediately in the command CMD_CONFIRM(CMD_AUTO_PID2).
If error is detected in parameters, CMD_ERROR is sent with the error code:

: read from EEPROM failed (data is corrupted or empty)

: can't run algorithm at this moment

: write to EEPROM failed

: unknown action

: wrong command size

AP WN -

When finished, the controller sends a full set of tuned parameters to the GUI (CMD_READ_PARAMS_ XX),
for the current profile.

CMD_SERVO_OUT (#36) — Output PWM signal on the servol..4 pins

Name Type Min Max Possible values, remarks

SERVO_TIME[4]* 2s*4 | -1 2500 |value < 0: free up this pin and make it floating

value = 0: configure this pin as output and set it to 'Low' state
value > 0: PWM pulse time, us. Should be less than PWM
period, configured by the “SERVO_RATE” parameter. Regular
servo accept values in range about 500..2500 us, 1500 us is
neutral position, PWM period is 20000 us or less.

frw.ver 2.70b8+:
in a special PWM duty cycle output mode, value 1000
corresponds to 0% duty cycle, value 2000 to 100% duty cycle.

RESERVED 8b

Servo mode is available on the ports:
Servo1 - EXT_FC_ROLL
Servo2 - EXT_FC_PITCH
Servo3 - RC_PITCH 3
Servo4 - AUX1

CMD_I2C_WRITE_REG_BUF (#39) - writes data to any device connected to 12C line

Name Type Min Max Possible values, remarks

DEVICE_ADDR 1u bit0: 12C port
0 for external port (IMU sensor is connected)
1 for internal port (EEPROM)

bit1..7: 12C address

REG_ADDR 1u register to write

DATA ? remaining bytes are counted as data

‘,‘ © Basecamelectronics® 2024 62

Miscellaneous commands SimpleBGC32 Serial API protocol specification

On successful writing, confirmation CMD_CONFIRM is sent in response.

CMD_I2C_READ_REG_BUF (#40) - requests reading from any device connected to 12C line

Name Type Min Max Possible values, remarks

DEVICE_ADDR 1u bit0: 12C port

0 for external 12C port

1 for internal 12C port (where on-board 12C devices are
connected)

bit1..7: 12C address*

REG_ADDR 1u register to read (only 1-byte addressing is supported)

DATA_LEN 1u length of data to read

On successful reading, CMD_I2C_READ_REG_BUF command is sent in response.

* for example, to read from ICM-20602 on address 0x68 from 'who am I' register, payload is “D0O 75 01”

CMD_RUN_SCRIPT (#57) - start or stop user-written script

Name Type Min Max Possible values, remarks
MODE 1u 0 —stop
1 — start

2 — start with debug information is sent back in the
CMD_SCRIPT_DEBUG

SLOT 1u 0 4 slot number, starting from 0.

RESERVED 32b

CMD_BEEP_SOUND (#89) - play melody by motors or emit standard beep sound

Name Type Min Max Possible values, remarks

MODE 2u Pre-defined melodies:
BEEPER_MODE_CALIBRATE = (1<<0)
BEEPER_MODE_CONFIRM = (1<<1)
BEEPER_MODE_ERROR = (1<<2)
BEEPER_MODE_CLICK = (1<<4)
BEEPER_MODE_COMPLETE = (1<<5)
BEEPER_MODE_INTRO = (1<<6)

Custom melody:
BEEPER_MODE_CUSTOM_MELODY = (1<<15)

NOTE_LENGTH 1u 1 255 The duration of each note in custom melody mode.
Units: 8ms samples

DECAY_FACTOR 1u 0 15 Set the envelope "attack-decay" after each pause,that makes
sound more natural. The bigger value, the longer decay. 0 - no
decay.

*Note: envelope takes effect only in the encoder-enabled
firmware or when motors are OFF. The same is true for the
'volume' parameter in the GUI.

RESERVED 8b

NOTE_FREQ_HZ|[N] 2u*N | 554 21000 |Array of 2u elements, size N = 0..50, - melody to play if

‘,‘ © Basecamelectronics® 2024 63

Miscellaneous commands SimpleBGC32 Serial API protocol specification

mode=BEEPER_MODE_CUSTOM_MELODY. Special value
21000 used to restart the envelope. Value > 21000 restarts
envelope and makes a pause with the duration (val — 21000)
8ms-samples.

Units: Hz

Example1: simple melody with short B5, D6, G6 notes and envelope:
00 80 05 03 00 00 00 00 00 00 00 00 DB 03 DB 03 08 52 DB ©3 DB 03 08 52 96 04 96 04 08
52 1F 06 1F 06 1F 06 1F 06 1F 06

Example2: standard "calibration" sound:
01 00 00 O3 00 00 0O VO 00 00 00 00

Example3: single beep 1 second at 3kHz:
00 80 7D 00 00 00 0O PO 00 00 00 00 B8 OB

CMD_SIGN_MESSAGE (#50) - sign message by secret keys

Name Type Min Max Possible values, remarks
SIGN_TYPE 1u Defines a set of keys to be used
MESSAGE 32b Message to be siged

Signed message is sent in response in the command CMD_SIGN_MESSAGE

CMD_EXT_IMU_CMD (#110) - forward message from the controller to the connected external
IMU sensor

Name Type Min Max Possible values, remarks

CMD_ID 1u Command ID (see GPS_IMU API specification for available
commands)

DATA Payload

The response from the external IMU will be sent back in the CMD_EXT_IMU_CMD incoming command.

CMD_EXT_SENS_CMD (#150) - forward message to the GPS_IMU sensor
(min. frw.ver. 2.68b7, “Extended” family only)
Forward message to the GPS_IMU sensor connected by CAN bus and acting as a main IMU.

Name Type Min Max Possible values, remarks

FLAGS 1u BitO: high priority. Low priority messages may be lost or delayed
during the transmission, while delivery of high priority messages
is guaranteed.

COMAND_ID 1u Command ID according to GPS_IMU Serial API

DATA All remaining bytes are sent as a payload. It doesn't include
header and checksum.

‘,‘ © Basecamelectronics® 2024 64

https://www.basecamelectronics.com/files/GPS_IMU/Basecam%20GPS_IMU%20Serial%20API.pdf

Miscellaneous commands SimpleBGC32 Serial API protocol specification

All messages that GPS_IMU sends in response, are wrapped by CMD _EXT SENS CMD incoming message.

CMD_CAN_DEVICE_SCAN (#96) - scan for the connected CAN devices
No parameters.

Controller scans all connected CAN devices and answers with the CMD _CAN_DEVICE SCAN incoming
command.
CMD_ERROR is sent in case of problems, with the ERROR_CODE related to file operations.

Responses

CMD_CONFIRM (#67) - confirmation of previous command or finished calibration

Name Type Min Max Possible values, remarks

CMD_ID 1u Command ID to confirm

DATA 1u DATA depends on command to be confirmed
or
2u

CMD_ERROR (#255) - error executing previous command

Data depends on error type.

Name Type Min Max Possible values, remarks
ERROR_CODE 1u Codes related to file operations:
0 - No error

1 - EEPROM access fault
2 - File is not found

3 - FAT records fault

4 - No free space left

5 - FAT is full

6 - File size is invalid

7 - CRC check failed

8 - Limit reached

9 - File corrupted

10 - Wrong params

ERROR_DATA 4b

CMD_I2C_READ_REG_BUF (#40) - result of reading from 12C device

Min Max Possible values, remarks

DATA 1..255b Data length depends on the DATA_LEN parameter in the
request.

',‘ © Basecamelectronics® 2024 65

Miscellaneous commands SimpleBGC32 Serial API protocol specification

CMD_AUTO_PID (#35) - progress of PID auto tuning

This command is sent by the controller during the automatic PID tuning, if requested.

Name Type Min Max Possible values, remarks
P[3] 1u*3

I[3] 1u*3

D[3] 1u*3

LPF_FREQ[3] 2u*3

ITERATION_CNT 2u

8: TRACKING_ERROR float Current error between the target and actual system response
— | RESERVED 6b

0

X

@®

RESERVED 10b

CMD_RESET (#114) - notification on device reset

Device sent this command when goes to reset. There is a delay 1000ms after this command is sent and
reset is actually done. External application can free up resources and properly close the serial connection.

MOTOR4_CONTROL - provides data for the external controller of the 4™ axis motor
(frw.ver. 2.68+)

It's not a separate command. This structure is included as a part of other commands.

Name Type Min Max Possible values, remarks

FF_SPEED 2s Feed-forward control

Units: 0,06103701895 degree/sec

ANGLE_ERROR 2s Distance to reach the target angle of 4" axis
Units: 0,02197265625 degree

PID_OUT 4f The output of the internal PID loop running over the
ANGLE_ERROR with the FF_SPEED mixed, scaled by the
'scale factor' parameter.

CMD_EVENT (#102) - sent when event is triggered
(frw.ver. 2.65+)

Name Type Min Max Possible values, remarks

EVENT_ID 1u EVENT_ID_MENU_BUTTON =1

generated on the menu buttons press, hold or release actions.
For the "hold" state, command is sent serially with the given
interval.

Supported types: EVENT_TYPE_OFF, EVENT_TYPE_ON,
EVENT_TYPE_HOLD

EVENT_ID_MOTOR_STATE =2
generated on the motors ON/OFF action.
Supported types: EVENT_TYPE_OFF, EVENT_TYPE_ON.

‘,‘ © Basecamelectronics® 2024 66

Miscellaneous commands

SimpleBGC32 Serial API protocol specification

EVENT_ID_EMERGENCY_STOP =3
generated on the emergency stop error.
Supported types: EVENT_TYPE_OFF, EVENT_TYPE_ON

EVENT_ID_CAMERA =4

generated on the menu commands "Camera Rec[Photo] event"
Supported types: EVENT_TYPE_REC_PHOTO,
EVENT_TYPE_PHOTO

EVENT_ID_SCRIPT =5 (frw. ver. 2.68b8+)

generated on script start (EVENT_TYPE_ON) and finish
(EVENT_TYPE_OFF). PARAM1 holds the slot from where the
script is executed.

EVENT_TYPE

Possible value and its meaning depends on the EVENT_ID
parameter.

EVENT_TYPE_OFF =1
state changed to OFF (button is released, motor is turned OFF)

EVENT_TYPE_ON =2
state is changed to ON (button is pressed, motors is turned ON)

EVENT_TYPE_HOLD =4
state is remaining ON (button is held).

EVENT_TYPE_REC_PHOTO =1

EVENT_TYPE_PHOTO =2

menu commands "Camera Rec/Photo event" and "Camera
photo event"

PARAM1

Possible value and its meaning depends on the EVENT_ID and
EVENT_TYPE parameters:

EVENT_ID_MENU_BUTTON
for the "release" and "hold" events, encodes the time period
when the button was held (unsigned value in milliseconds)

EVENT_ID_SCRIPT
slot from where the script is executed, starting from 0.

NOTE: this command may be expanded by extra parameters in future versions...

CMD_SIGN_MESSAGE (#50) - result of message signing

Name
SIGNATURE

Type Min
32b

Max Possible values, remarks

Signed message

CMD_EXT_IMU_CMD (#110) - forwarded message received from the connected external IMU

sensor
Name Type Min Max Possible values, remarks
CMD_ID 1u Command ID (see GPS_IMU API specification for available
commands)
DATA Payload
2024 67

‘,‘ © Basecamelectronics®

Miscellaneous commands SimpleBGC32 Serial API protocol specification

CMD_EXT_SENS_CMD (#150) - forward message from the GPS_IMU sensor
(min. frw.ver. 2.68b7, “Extended” family only)

A forwarded message from the GPS_IMU sensor connected by CAN bus and acting as a main IMU. This
message is sent in response to CMD _EXT SENS CMD outgoing message.

Type Min Max Possible values, remarks
COMAND_ID 1u Command ID according to GPS_IMU Serial API
All remaining bytes are for payload. It doesn't include header

DATA

and checksum.

CMD_CAN_DEVICE_SCAN (#96) - result of scanning all connected CAN devices, with the ID
assigned to them.

P4
o
=
o

Type Min Max Possible values, remarks
uib 12b Unique identifier of the device

ID 1u Assigned ID to this device, 0 if not assigned.
5 — CAN_IMU (main)
6 — CAN_IMU (frame)
7 — GPS_IMU (main)
17 — CAN_Drv#1
18 — CAN_Drv#2
19 — CAN_Drv#3
20 — CAN_Drv#4
21 — CAN_Drv#5
22 — CAN_Drv#6
23 — CAN_Drv#7
28 — CAN_IMU (main) (old)
29 — CAN_IMU (frame) (old)
On some firmware versions devices that can't be

assigned, are not listed.

(1..DeviceNum)

N=

TYPE 1u Bits 0..6: device type
1 — Motor driver
2-1MU

Bit7: ID is hardware-assigned

‘,‘ © Basecamelectronics® 2024 68

https://www.basecamelectronics.com/files/GPS_IMU/Basecam%20GPS_IMU%20Serial%20API.pdf

EEPROM and internal file system SimpleBGC32 Serial API protocol specification

EEPROM and internal file system

Requests

CMD_READ _FILE (#53) - read file from internal filesystem

This command reads a portion of data from a file with the identifier FILE_ID, started at PAGE_OFFSET
pages (1page = 64byte) and to the end of file, but not more then MAX_SIZE bytes. Size of a portion should
not exceed maximum allowed command data length (256 bytes). The result or error code is sent in the
incoming command CMD_READ_FILE.

Name Type Min Max Possible values, remarks

FILE_ID 2u 1%t byte encodes the file type; 2™ byte depends on type;
FILE_TYPE_SCRIPT = 1

FILE_TYPE_IMU_CALIB = 3
FILE_TYPE_COGGING_CORRECTION = 4
FILE_TYPE_ADJ VAR LUT = 5
FILE_TYPE_PROFILE_SET = 6

FILE_TYPE_PARAMS = 7

FILE_TYPE_TUNE = 8

FILE_TYPE_CANDRV = 10
PAGE_OFFSET 2u offset from the beginning, in pages. 1 page = 64 bytes.
MAX_SIZE 2u
RESERVED 14b

CMD_WRITE_FILE (#54) - write file to internal filesystem

This command writes a portion of data to a file with the identifier FILE_ID. If file is not exists, it is created. If
FILE_SIZE is not equal to existing file size, file is adjusted to new size. If DATA is empty, file is deleted.

Name Type Min Max Possible values, remarks

FILE_ID 2u See CMD_READ_FILE.FILE_ID

FILE_SIZE 2u Full size of a file

PAGE_OFFSET 2u offset from the beginning, in pages. 1 page = 64 bytes.

DATA ? All remaining bytes are counted as data. Size should be less
then FILE_SIZE parameter. If data is empty, file will be deleted.

In response CMD_CONFIRM is sent, with parameter ERR_CODE. Possible codes:
NO_ERROR = @
ERR_EEPROM_FAULT =
ERR_FILE_NOT_FOUND
ERR_FAT = 3
ERR_NO_FREE_SPACE
ERR_FAT_IS_FULL =
ERR_FILE_SIZE = 6
ERR_CRC = 7
ERR_LIMIT_REACHED = 8
ERR_FILE_CORRUPTED = 9
ERR_WRONG_PARAMS = 10

1
=2

=4
5

“ © Basecamelectronics® 2024 69

EEPROM and internal file system SimpleBGC32 Serial API protocol specification

CMD_FS_CLEAR_ALL (#55) - delete all files from internal filesystem
Returns CMD_CONFIRM with parameter ERR_CODE (see definitions in the CMD_WRITE_FILE command)

CMD_EEPROM_WRITE (#47) - writes a block of data to EEPROM to specified address

Name Type Min Max Possible values, remarks
ADDR 4u 0 32767 |address should be aligned to 64.
* *EEPROM size in all SBGC32 controllers is 32Kbytes.
DATA ? All remaining bytes counted as data, arbitrary size but aligned to
64-byte pages

On success, confirmation CMD_CONFIRM is sent with parameters CMD_EEPROM_WRITE, ADDR.

CMD_READ_EXTERNAL_DATA (#42) - receive user data, stored in the EEPROM

External systems can use this area to store their configurations.

Name Type Min Max Possible values, remarks
DATA 128b

CMD_EEPROM_READ (#48) - request a reading of block of data from EEPROM at the specified
address and size.

Name Type Min Max Possible values, remarks
ADDR 4u 0 32767 |address should be aligned to 64.

* *EEPROM size in all SBGC32 controllers is 32Kbytes.
SIZE 2u 64 192 size should be aligned to 64

On success, CMD_EEPROM_READ is sent in response.

CMD_WRITE_EXTERNAL_DATA (#41) - stores any user data to the dedicated area in the
EEPROM

Name Type Min Max Possible values, remarks
DATA 128b

Confirmation is sent on success.

CMD_READ_EXTERNAL_DATA (#42) - request user data, stored in the EEPROM

No parameters.

CMD_READ_EXTERNAL_DATA is sent in response.

',‘ © Basecamelectronics® 2024 70

EEPROM and internal file system SimpleBGC32 Serial API protocol specification

Responses

CMD_READ_FILE (#53) - result of reading file from internal filesystem

In case of success:

Name Type Min Max Possible values, remarks

FILE_SIZE 2u total size of file, bytes

PAGE_OFFSET 2u offset that was requested, in pages. 1 page = 64 bytes
DATA ? size that was requested, or less if the end of file is reached

In case of errors:

Type Min Max Possible values, remarks

ERR_CODE 1u see error definitions in the CMD_WRITE_FILE command

CMD_EEPROM_READ (#48) - receive a portion of data read from EEPROM at the specified
address.

Name Type Min Max Possible values, remarks
ADDR 4u Address of a portion of data, 64-byte aligned

DATA

? All remaining bytes are counted as data. Size is specified in
the CMD_EEPROM_READ outgoing command.

',‘ © Basecamelectronics® 2024 71

SimpleBGC32 Serial API protocol specification

Appendix

Command ID definitions

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CMD_READ_PARAMS 82
CMD_WRITE_PARAMS 87
CMD_REALTIME_DATA 68
CMD_BOARD_INFO 86
CMD_CALIB_ACC 65
CMD_CALIB_GYRO 103
CMD_CALIB_EXT GAIN 71
CMD_USE_DEFAULTS 70
CMD_CALIB_POLES 80
CMD_RESET 114
CMD_HELPER_DATA 72
CMD_CALIB_OFFSET 79
CMD_CALIB_BAT 66
CMD_MOTORS_ON 77
CMD_MOTORS_OFF 109
CMD_CONTROL 67
CMD_TRIGGER_PIN 84
CMD_EXECUTE_MENU 69
CMD_GET_ANGLES 73
CMD_CONFIRM 67
CMD_BOARD_INFO_3 20
CMD_READ_PARAMS_3 21
CMD_WRITE_PARAMS_3 22
CMD_REALTIME_DATA 3 23
CMD_REALTIME_DATA 4 25
CMD_SELECT_IMU_3 24
CMD_READ_PROFILE_NAMES 28
CMD_WRITE_PROFILE_NAMES 29
CMD_QUEUE_PARAMS_INFO_3 30
CMD_SET_ADJ_VARS_VAL 31
CMD_SAVE_PARAMS_3 32
CMD_READ_PARAMS_EXT 33
CMD_WRITE_PARAMS_EXT 34
CMD_AUTO_PID 35
CMD_SERVO_OUT 36
CMD_I2C_WRITE_REG_BUF 39
CMD_I2C_READ_REG_BUF 40
CMD_WRITE_EXTERNAL_DATA 41
CMD_READ_EXTERNAL_DATA 42
CMD_READ_ADJ_VARS_CFG 43
CMD_WRITE_ADJ_VARS_CFG 44
CMD_API_VIRT CH_CONTROL 45
CMD_AD3J_VARS_STATE 46
CMD_EEPROM_WRITE 47
CMD_EEPROM_READ 48
CMD_CALIB_INFO 49
CMD_SIGN_MESSAGE 50
CMD_BOOT_MODE_3 51
CMD_SYSTEM_STATE 52
CMD_READ_FILE 53
CMD_WRITE_FILE 54
CMD_FS_CLEAR_ALL 55
CMD_AHRS_HELPER 56
CMD_RUN_SCRIPT 57
CMD_SCRIPT_DEBUG 58
CMD_CALIB_MAG 59
CMD_GET_ANGLES_EXT 61

*‘ © Basecamelectronics® 2024

72

SimpleBGC32 Serial API protocol specification

#define CMD_READ_PARAMS_EXT2 62
#define CMD_WRITE_PARAMS_EXT2 63
#define CMD_GET_ADJ_VARS_VAL 64
#define CMD_CALIB_MOTOR_MAG_LINK 74
#define CMD_GYRO_CORRECTION 75
#define CMD_DATA_STREAM_INTERVAL 85
#define CMD_REALTIME_DATA_CUSTOM 88
#define CMD_BEEP_SOUND 89

#define CMD_ENCODERS_CALIB_OFFSET_4 26
#define CMD_ENCODERS_CALIB_FLD_OFFSET 4 27
#define CMD_CONTROL_CONFIG 90
#define CMD_CALIB_ORIENT_CORR 91
#define CMD_COGGING_CALIB_INFO 92
#define CMD_CALIB_COGGING 93

#define CMD_CALIB_ACC_EXT REF 94
#define CMD_PROFILE_SET 95

#define CMD_CAN_DEVICE_SCAN 96
#define CMD_CAN_DRV_HARD_PARAMS 97
#define CMD_CAN_DRV_STATE 98

#define CMD_CAN_DRV_CALIBRATE 99
#define CMD_READ_RC_INPUTS 100
#define CMD_REALTIME_DATA_CAN DRV 101
#define CMD_EVENT 102

#define CMD_READ_PARAMS_EXT3 104
#define CMD_WRITE_PARAMS_EXT3 105
#define CMD_EXT_IMU_DEBUG_INFO 106
#define CMD_SET_DEVICE_ADDR 107
#define CMD_AUTO_PID2 108

#define CMD_EXT_IMU_CMD 110

#define CMD_READ_STATE_VARS 111
#define CMD_WRITE_STATE_VARS 112
#define CMD_SERIAL_PROXY 113

#define CMD_IMU_ADVANCED_CALIB 115
#define CMD_API_VIRT_CH_HIGH_RES 116
#define CMD_CALIB_ENCODER_LUT 117
#define CMD_CALIB_ENCODER_LUT_RES 118
#define CMD_WRITE_PARAMS_SET 119
#define CMD_CALIB_CUR_SENS 120
#define CMD_CONTROL_EXT 121

#define CMD_EXT_SENS_CMD 150

#define CMD_SET_DEBUG_PORT 249
#define CMD_MAVLINK_INFO 250
#define CMD_MAVLINK_DEBUG 251
#define CMD_DEBUG_VARS_INFO_3 253
#define CMD_DEBUG_VARS_3 254
#define CMD_ERROR 255

ﬂ‘ © Basecamelectronics® 2024 73

Appendix SimpleBGC32 Serial API protocol specification

Appendix A: Examples and libraries

We provide a comprehensive C-language library with examples for various platforms:
https://qithub.com/basecamelectronics/sbgc32-serial-ap

See README.md for details.

CRC16 reference implementation in C

void crcl6_update(uintl6_t length, uint8_ t *data, uint8 t crc[2]) {
uintl6_t counter;
uintlé_t polynom = 0x8005;
uintl6_t crc_register = (uint16_t)crc[@] | ((uintl6_t)crc[1] << 8);
uint8_t shift_register;
uint8_t data_bit, crc_bit;

for (counter = @; counter < length; counter++) {
for (shift_register = 0x01; shift_register > 0x00; shift_register <<= 1) {
data_bit = (data[counter] & shift_register) ? 1 : 0;
crc_bit = crc_register >> 15;
crc_register <<= 1;

if (data_bit != crc_bit) crc_register ~= polynom;
}
}
crc[@] = crc_register;
crc[1] = (crc_register >> 8);

}

void crcl6_calculate(uintl6_t length, uint8 t *data, uint8_t crc[2]) {
crc[@] = 0; crc[1] = ©;
crcl6_update(length, data, crc);

}

Example with CRC16 for command CMD_BOARD_INFO:

start byte header payload CRC16

command payload header
ID size checksum

OXE6 | 0x13

‘,‘ © Basecamelectronics® 2024

74

https://github.com/basecamelectronics/sbgc32-serial-api

Appendix

SimpleBGC32 Serial API protocol specification

Appendix B: Run-time parameters definition (adjustable variables)

NAME Frw. ver. D TYPE MIN MAX REMARK

P_ROLL 0 1u 0 255

P_PITCH 1

P_YAW 2

|_ROLL 3 1u 0 255

|_PITCH 4

I_YAW 5

D _ROLL 6 1u 0 255

D _PITCH 7

D_YAW 8

POWER_ROLL 9 1u 0 255

POWER_PITCH 10

POWER_YAW 11

ACC_LIMITER 12 2s 1275 Units: degrees/sec?

FOLLOW_SPEED_ROLL 13 1u 255

FOLLOW_SPEED_PITCH 14

FOLLOW_SPEED_YAW 15

FOLLOW_LPF_ROLL 16 1u 0 15

FOLLOW_LPF_PITCH 17

FOLLOW_LPF_YAW 18

RC_SPEED_ROLL 19 1u 0 255

RC_SPEED_PITCH 20

RC_SPEED_YAW 21

RC_LPF_ROLL 22 1u 0 15 *Range depends on the flag

RC_LPF_PITCH 23 (255)* “Extend LPF range” in GUI

RC_LPF_YAW 24 settings

RC_TRIM_ROLL 25 1s -127 127

RC_TRIM_PITCH 26

RC_TRIM_YAW 27

RC_DEADBAND 28 1u 0 255 Updates RC Dead-band for all
axes.
Frw.2.72b0: added new
variables for PITCH, YAW
axes; once they are updated,
this variable affects only the
ROLL axis.

RC_EXPO_RATE 29 1u 0 100 Updates RC Expo rate for all
axes.
Frw.2.72b0: added new
variables for PITCH, YAW
axes; once they are updated,
this variable affects only the
ROLL axis.

FOLLOW_PITCH 30 1u 1

FOLLOW_YAW_PITCH 31 1u 2 0 — disabled
1 - Follow YAW
2* — Follow YAW, PITCH
[ROLL]
*frw. ver. 2.65b3

FOLLOW_DEADBAND 32 1u 255

FOLLOW_EXPO_RATE 33 1u 100

FOLLOW_ROLL_MIX_START 34 1u 90

“ © Basecamelectronics® 2024

75

SimpleBGC32 Serial API protocol specification

FOLLOW_ROLL_MIX_RANGE 35 1u 0 90
GYRO_TRUST 36 1u 0 255
FRAME_HEADING_ANGLE 37 2s -1800 1800 The frame's heading (YAW)
angle expressed in Euler order
frame-PITCH-ROLL-YAW used
as an absolute heading
reference for the gyrosope
sensor. Effect is similar to the
FRAME_HEADING variable in
the CMD_HELPER_DATA.
Units: 0.1 degrees
Special value 0x7FFF disables
the correction
GYRO_HEADING_CORRECTION 38 2s -20000 | 20000 Units: 0.001 of gyro sensor
units
ACC_LIMITER_ROLL 39 2s 0 1275
ACC_LIMITER_PITCH 40 Units: degrees/sec?
ACC_LIMITER_YAW 41
PID_GAIN_ROLL 42 1u 0 255 Gain is calculated as
PID_GAIN_PITCH 43 LT
PID_GAIN_YAW 44 0.1 + PID_GAIN[axis]*0.02
LPF_FREQ_ROLL 45 2u 10 400
LPF_FREQ_PITCH 46 Units: Hz
LPF_FREQ_YAW 47
TIMELAPSE_TIME 48 2u 1 3600 Units: sec
MAV_CTRL_MODE 49 1u 0 2 0 — disabled
1 —ROLL and PITCH only
2 — enabled for all axes
H_CORR_FACTOR 2.68b7 |50 1u 0 255 Heading correction factor from
external reference
SW_LIM_MIN.ROLL 2.68b8 |51 2s -3600 3600 Software limits for each motor,
SW_LIM_MAX.ROLL 52 degrees (encoder firmware
SW_LIM_MIN.PITCH 53 only)
SW_LIM_MAX.PITCH 54 Note: set new values only in
SW_LIM_MIN.YAW 55 pairs, min should go prior to
SW_LIM_MAX.YAW 56 max!
FOLLOW_RANGE.ROLL 2.68b9 |57 1u 0 255
FOLLOW_RANGE.PITCH 58 Units: degrees
FOLLOW_RANGE.YAW 59
AUTO_PID_TARGET 2.68b9 |60 1u 0 255 Stability-precision slider for
automatic PID tuing algorithm
RC_MODE.ROLL 2.69b3 |61 1u 0 - ANGLE
RC_MODE.PITCH 62 1 - SPEED
RC_MODE.YAW 63 2 — TRACKING
EULER_ORDER 2.69b3 |64 1u 0 — PITCH-ROLL-YAW
1 — ROLL-PITCH-YAW
2 — PITCH(M)-ROLL-YAW(M)
3 — ROLL-PITCH(M)-YAW(M)
4 — YAW-ROLL-PITCH
FOLLOW_IN_DBAND 2.70b4 |65 1u 0 255 “Follow inside deadband”
parameter
RC_LIMIT_MIN.ROLL 2.72b0 |66 2s -3600 3600 Angle limits for the Euler axes,
RC_LIMIT_MAX.ROLL 67 degrees.
RC_LIMIT_MIN.PITCH 68 Note: set new values only in
RC_LIMIT_MAX.PITCH 69 pairs, min should go prior to

'ﬁ‘ © Basecamelectronics® 2024

76

SimpleBGC32 Serial API protocol specification

RC_LIMIT_MIN.YAW 70 max!
RC_LIMIT_MAX.YAW 71

RC_DEADBAND.PITCH 2.72b0 |72 1u 0 255 See RC_DEADBAND
RC_DEADBAND.YAW 73

RC_EXPO_RATE.PITCH 2.72b0 |74 1u 0 100 See RC_EXPO
RC_EXPO_RATE.YAW 75

*‘ © Basecamelectronics® 2024 77

SimpleBGC32 Serial API protocol specification

Appendix C: Providing external reference attitude/heading information from UAV

Serial API allows for flight controllers of UAVs to send attitude and heading information that can be used as a
reference to correct attitude and heading of internal IMU, improving its precision. As a rule, flight controllers
have more sensors on-board and can do better attitude/heading angles estimation than the IMU sensor used
in the SBGC32 controller.

This kind of correction is described in detail in section 18 of the "SimpleBGC32 User Manual". Our controller
supports direct connection only for several models of AHRS/IMU devices. For others, Serial APl can be used.

In a few words, there are two options to apply the correction:
1. provide attitude and/or heading of the frame via command CMD_AHRS_HELPER
2. compensate for linear accelerations via command CMD_HELPER_DATA

Option 1) is better because the attitude/heading information is used directly, allowing to disable the internal
accelerometer and keep using the internal gyroscope only. However, it requires knowing an exact attitude of
the gimbal's frame. But a common case when the gimbal mounted on the UAV has anti-vibration dampeners,
which add some degree of freedom. It makes using attitude/heading information from the UAV's flight
controller not applicable for a precise attitude correction for the gimbal's IMU.

Option 2) is more tolerant in this case. You can use it to compensate the attitude drift caused by an
accelerated motion and the heading drift causing by an unreferenced YAW gyroscope. Attitude/heading is
still computed inside the gimbal's controller, using an internal accelerometer and gyroscope. You need to
pass linear accelerations (with the gravity subtracted) in the command CMD_HELPER_DATA. Also, for 3-axis
systems, you have to provide heading information to synchronize the camera's heading angle with the UAV's
heading. “Heading” here is the Euler's YAW angle expressed in order “frame-PITCH-ROLL-YAW” (note that
the order of angles does matter; the commonly used in aeronautics “ROLL-PITCH-YAW” will give different
values for the same physical orientation).

As a drawback, option 2) does not help to compensate for a drift caused by the thermal instability of the
gyroscope and accelerometer sensors.

Using high-grade IMU for a correction

If a high-grade IMU is used instead of UAV, there are several options where to mount it: on the frame (above
the outer motor), below the outer motor, or on the camera platform. The last option provides the best
accuracy because mechanical imperfection and encoder calibration do not distort the AHRS data.

Notes on data rates and how to interrupt the correction

The more data rate is, the better. Though, as this correction is a kind of low-pass filter, and it changes the
actual attitude very slowly, it is okay to have a slow data rate and still have a good result. There are no
reasons to have it higher than 125 Hz as it's the maximum processing rate of Serial APl messages.

The last data received in the CMD_AHRS_HELPER / CMD_HELPER_DATA messages is considered as the actual
attitude/heading until it's updated by the new portion of data. If the host controller stops sending these
messages, but system actually moves, it leads to serious confusion of the IMU subsystem.

Starting from firmware ver. 2.70b1 it is possible to properly stop the correction by sending a command
CMD_AHRS_HELPER with the flag "Disable correction" (bit10 in the MODE parameter). For the
CMD_HELPER_DATA it's enough to send zero accelerations and special value 32767 for the FRAME_HEADING
parameter.

*‘ © Basecamelectronics® 2024 78

SimpleBGC32 Serial API protocol specification

Appendix D: Coordinate system conversions

If not specified, it's assumed the END (East-North-Down) coordinate system, that differs from commonly
used NED system: in our system, X points right (or East), Y points forward (or North), Z points down. To
convert vectors to NED system, you need to swap X and Y components.

Rotation matrix

CMD_AHRS_HEPER provides and takes orientation data in a form of rotation matrix (DCM), but first row is
omitted to save the bandwidth. The full rotation matrix can be reconstructed from two vectors H_VECT and
Z_VECT:

A A Az AVECT

x y
DCM pypy=\H, H, H_ |=|Hyr|
Zx Zy Zz ZVECT

A veer=H yger X Zyger

Z VECT and H_VECT can be considered as unit vectors in body reference system pointing down and North
directions.

To convert rotation matrix from / to commonly used NED coordinate system, just swap first two rows:

H, H, H,
DCM =\ 4, 4, A,
zZ, Z, Z,

Note that some systems need an alternative definition of rotation matrix: (body-to-world or world-to-body
defines the same rotations but in opposite direction), so DCM may need to be transposed (i.e. rows arranged
as columns).

Quaternions

Serial API does not provide quaternions prior to firmware version 3.00x, but the rotation matrix can be
converted to / from quaternion without loss of precision.

Euler angles

Serial API provides and takes all angles in a form of Euler angles. Attitude/heading can be reconstructed
from Euler angles, but it is important taking into account the order of Euler rotations. SBGC32 supports
several orders that may be configured in system parameters. Since this order is not knows in advance, it's
better to avoid using Euler angles to represent the rotations in calculations. Another problem is that Euler
rotations are not free from gimbal lock problem. Rotation matrix is free from this problem and correctly
represents all possible positions.

ﬂ‘ © Basecamelectronics® 2024 79

SimpleBGC32 Serial API protocol specification

Appendix E: “Emergency stop” error codes

e SUB_ERR_I2C_ERRORS = 1, // High rate of I2C errors

e SUB_ERR_DRV_OTW = 2, // Driver over-temperature protection

* SUB_ERR_DRV_FAULT = 3, // Driver fault (under-voltage, over-current, short
circuit)

+ SUB_ERR_ENCODER_IMU_ANGLE = 4, // Encoder/IMU angles mismatch

e SUB_ERR_CALIBRATION_FAILED = 5, // Auto calibration process caused serious fault

+ SUB_ERR_INTERNAL_SYSTEM ERROR = 6, // Stack is damaged

* SUB_ERR_ENCODER_CALIB BAD_SCALE = 7, // estimated scale differs a lot from
configured

e SUB_ERR_OVER_TEMPERATURE = 8, // MCU or power board over temperature

* SUB_ERR_BAD_MOTOR_POLES_INVERT = 9, // motor n.poles or inversion is wrong

* SUB_ERR_NOT_ENOUGH_MEMORY = 10, // static_malloc() can't allocate memory

e SUB_ERR_IMU_SENSOR_NOT_RESPONDING = 11, // lost connection to IMU sensor

e SUB_ERR_CAN_HARD = 12, // CAN on board hardware error

* SUB_ERR_MOTOR_OVERHEAT_PROTECTION = 13, // overheat protection is triggered

e SUB_ERR_MOTOR_IS LOCKED = 14, // motor is locked during automated task

e SUB_ERR_BAD_IMU_HEALTH = 15, // IMU gyroscope and accelerometer error is too big:
sensor sends corrupted data or wrong use conditions

* SUB_ERR_INFINITE_RESET = 16, // Infinite reset loop is detected

* SUB_ERR_WRONG_INITIAL_POSITION = 17, // wrong position: failed to detect encoder
angle, or angle is outside soft limits
SUB_ERR_MOTOR_LOAD_TIME_EXCEEDED = 18, // motors are fully loaded too long time

* SUB_ERR_CAN_DRV_OVERCURRENT = 19, // hardware short-circuit protection

* SUB_ERR_CAN_DRV_UNDERVOLTAGE = 20, // hardware or software undervoltage
protection

e SUB_ERR_CAN_DRV_EMERGENCY_PIN = 21, // external emergency is triggered

* SUB_ERR_CAN_DRV_FOC_DURATION = 22, // FOC algorithm duration error

* SUB_ERR_CAN_DRV_MCU_OVERHEAT = 23, // driver temperature is to high

* SUB_ERR_CAN_DRV_MOTOR_OVERHEAT = 24, // motor temperature is to high

* SUB_ERR_CAN_DRV_OVERCURRENT_SOFT = 25, // current through motor exceed limit

* SUB_ERR_CAN_DRV_SEVERAL = 26, //several errors on driver

* SUB_ERR_CAN_EXT_BUS_OFF 27, // CAN bus high rate errors of slave controller

* SUB_ERR_CAN_INT_BUS_OFF = 28, // CAN bus high rate errors of main controller

* SUB_ERR_ENCODER_NOT_FOUND = 29, // no any answer from encoder during init

+ SUB_ERR_CAN_DRV_NOT_RESPONDING = 30, // lost connection to CAN Drv

* SUB_ERR_CAN_DRV_WRONG_PARAMS = 31, // some params of CAN Drv isn't correct

* SUB_ERR_OVERCURRENT = 32, // fast over current protection of main controller, or
short circuit detection on startup

* SUB_ERR_UNSAFE_VOLTAGE = 33, // Under voltage protection or supply protection
controller fault

* SUB_ERR_WRONG_FULL_BAT_VOLTAGE_PARAM = 34, //battery voltage is higher than
expected at startup sequence

* SUB_ERR_EEPROM_PARAMS_CORRUPTED = 35, // parameters are corrupted in EEPROM and
can't be restored from backup slot

e SUB_ERR_ENCODER_UNSUPPORTED_TYPE = 36, // unsupported type of encoder

* SUB_ERR_EXT_IMU_UNSUPPORTED_TYPE = 37, // unsupported type of external imu of CAN
Imu, need update CAN Imu FW

* SUB_ERR_EXT_IMU_SENSOR_NOT_RESPONDING = 38, // lost connection to external imu of
CAN Imu

* SUB_ERR_EXT_IMU_WRONG_PARAMS = 39, // some errors in self test in external imu of
CAN Imu, or difference of int. and ext. is too big

'ﬁ‘ © Basecamelectronics® 2024 80

SimpleBGC32 Serial API protocol specification

* SUB_ERR_DRIVER_INIT = 4@, // initialization of ext. motor driver failed

* SUB_ERR_EEPROM_VARS_OUT_OF_BORDERS = 41, // _write_vars() or _read_vars() out of
borders

e SUB_ERR_IWDG_RESET = 42, // system was reset by watch-dog timer

* SUB_ERR_ADC_WAIT = 43, // error waiting for ADC samples

e SUB_ERR_CALIB_MOTOR_OFF = 44, // need power motor for calibration process

e SUB_ERR_TIMEOUT = 45,

+ SUB_ERR_CAN_DRV_CALIB_UNEXPECTED_RES = 46, // CAN DRV RL calibration error

s SUB_ERR_MAG_SENSOR_NOT_RESPONDING = 47, // lost connection to MAG sensor

+ SUB_ERR_CAN_DRV_OVERSPEED = 48, // CAN Drv spin too fast

e SUB_ERR_ENC_SELF_CALIB_FAILED = 49, // encoder self calibration failed

* SUB_ERR_CAN_VERSION_MISMATCH = 50, // major version of CAN module don't match
SBGC firmware version

* SUB_ERR_CAN_SERIAL_INIT = 51, // Serial-over-CAN can't be configured with the
current parameters

* SUB_ERR_CAN_SERIAL_CONFLICT = 52, // Serial-over-CAN conflict

e SUB_ERR_CAN_DRV_INIT_STAGE = 53, // CAN Drv initialization sequence failed though
it responds

* SUB_ERR_ENCODER_DATA_TIMEOUT = 54, // no fresh data from encoder for a long time

e SUB_ERR_HSE_START_FAIL = 56, // HSE (quartz) start problem

'ﬁ‘ © Basecamelectronics® 2024 81

	Overview
	Throughout capacity
	Debugging
	Message format
	Data type notation

	Table of contents
	Device information
	Requests
	CMD_BOARD_INFO (#86) – request board and firmware information
	CMD_BOARD_INFO_3 (#20) – request additional board information

	Responses
	CMD_BOARD_INFO (#86) – version and board information
	CMD_BOARD_INFO_3 (#20) – additional board information

	Configuring gimbal
	Requests
	CMD_READ_PARAMS (#82), CMD_READ_PARAMS_3 (#21) – request parameters from the board CMD_READ_PARAMS_EXT (#33) – request extended parameters part1 CMD_READ_PARAMS_EXT2 (#62) – request extended parameters part2 CMD_READ_PARAMS_EXT3 (#104) – request extended parameters part3
	CMD_WRITE_PARAMS (#87), CMD_WRITE_PARAMS_3 (#22) - write parameters to board and saves to EEPROM CMD_WRITE_PARAMS_EXT (#34) – write extended parameters part1 CMD_WRITE_PARAMS_EXT2 (#63) – write extended parameters part2 CMD_WRITE_PARAMS_EXT3 (#105) – write extended parameters part3
	CMD_WRITE_PARAMS_SET (#119) – start or end of the writing parameters sequence
	CMD_USE_DEFAULTS (#70) – reset to factory defaults
	CMD_CALIB_OFFSET (#79)– calibrate follow offset
	CMD_READ_PROFILE_NAMES (#28) – Request profile names stored in EEPROM
	CMD_WRITE_PROFILE_NAMES (#29) – Writes profile names to EEPROM
	CMD_PROFILE_SET (#95) – manage profile sets

	Responses
	CMD_READ_PARAMS_3 (#21) – read/write system configuration part 1
	CMD_READ_PARAMS_EXT (#33) – read/write system configuration part 2
	CMD_READ_PARAMS_EXT2 (#62) – read/write system configuration part 3
	CMD_READ_PARAMS_EXT3 (#104) – read/write system configuration part 3
	CMD_READ_PROFILE_NAMES (#28) – receive profile names from EEPROM

	Calibrating
	Requests
	CMD_CALIB_ACC (#65) – calibrate accelerometer CMD_CALIB_GYRO (#103) – calibrate gyroscope CMD_CALIB_MAG (#59) – calibrate magnetometer
	CMD_CALIB_EXT_GAIN (#71) – calibrate EXT_FC gains
	CMD_CALIB_POLES (#80) – calibrate poles and direction
	CMD_CALIB_BAT (#66) - calibrate internal voltage sensor
	CMD_ENCODERS_CALIB_OFFSET_4 (#26) - calibrate offset of encoders
	CMD_ENCODERS_CALIB_FLD_OFFSET_4 (#27) - start field offset calibration of encoders
	CMD_CALIB_ORIENT_CORR (#91) – start the calibration of sensor misalignment correction (frw. ver. 2.61+)
	CMD_CALIB_ACC_EXT_REF (#94) – refine the accelerometer calibration of the main IMU sensor
	CMD_CALIB_COGGING (#93) – starts the motor non-linearities calibration
	CMD_SYNC_MOTORS (#123) – mechanically align motors working in parallel for a single axis

	Real-time state monitoring and diagnostics
	Requests
	CMD_REALTIME_DATA_CUSTOM (#88) – request configurable realtime data
	CMD_REALTIME_DATA (#68), CMD_REALTIME_DATA_3 (#23) – request real-time data, response is CMD_REALTIME_DATA_3
	CMD_REALTIME_DATA_4 (#25) – request extended real-time data, response is CMD_REALTIME_DATA_4
	CMD_DATA_STREAM_INTERVAL (#85) – register or update data stream – a commands sent by the controller with the fixed rate without request
	CMD_READ_RC_INPUTS (#100) - read values for the selected RC inputs
	CMD_GET_ANGLES (#73), CMD_GET_ANGLES_EXT (#61) - Request information related to IMU angles and RC control state
	CMD_SELECT_IMU_3 (#24) – Select which IMU to calibrate or send realtime data
	CMD_DEBUG_VARS_INFO_3 (#253) – request information about debug variables
	CMD_DEBUG_VARS_3 (#254) – request values of debug variables
	CMD_CALIB_INFO (#49) – request information required for the "Calibration helper" dialog window
	CMD_READ_STATE_VARS (#111)– request reading system persistent state variables, cumulative statistics and maintenance data
	CMD_WRITE_STATE_VARS (#112) – write system persistent state variables, cumulative statistics and maintenance data
	CMD_SET_DEBUG_PORT (#249) – use this port for debugging

	Responses
	CMD_REALTIME_DATA_CUSTOM (#88) – configurable realtime data
	CMD_REALTIME_DATA_3 (#23) - receive real-time data
	CMD_REALTIME_DATA_4 (#25) - receive extended version of real-time data
	CMD_GET_ANGLES (#73) - Information about actual gimbal control state
	CMD_GET_ANGLES_EXT (#61) - Information about angles in different format
	CMD_DEBUG_VARS_INFO_3 (#253) – receive a specification of the debug variables
	CMD_DEBUG_VARS_3 (#254) – values of debug variables reflecting a state of the system.
	CMD_CALIB_INFO (#49) – receive information required for the "Calibration helper" dialog window.
	CMD_SCRIPT_DEBUG (#58) – state of execution of user-written script
	CMD_ADJ_VARS_STATE (#46) – receive the state of adjustable variables
	CMD_READ_RC_INPUTS (#100) - answer to the requested RC sources
	CMD_READ_STATE_VARS (#111) – result of reading system persistent state variables, cumulative statistics and maintenance data
	CMD_SET_DEBUG_PORT (#249) – receive serial API commands from all other ports for a debugging

	Run-time gimbal parameters
	Requests
	CMD_SET_ADJ_VARS_VAL (#31) – Update the value of selected parameter(s).
	CMD_GET_ADJ_VARS_VAL (#64) – Query the actual value of selected parameter(s).
	CMD_READ_ADJ_VARS_CFG (#43) – request configuration of mapping of control inputs to adjustable variables
	CMD_WRITE_ADJ_VARS_CFG (#44) – writes configuration of mapping of control inputs to adjustable variables
	CMD_SAVE_PARAMS_3 (#32) – Saves current values of parameters linked to adjustable variables, to EEPROM
	CMD_ADJ_VARS_STATE (#46) – request the state of adjustable variable in the given trigger and analog slots.

	Responses
	CMD_SET_ADJ_VARS_VAL (#31) – receive the values of adjustable variables.
	CMD_READ_ADJ_VARS_CFG (#43) – receive the configuration for adjustable variables

	IMU correction and diagnostic
	Requests
	CMD_HELPER_DATA (#72) – provide helper data for AHRS system
	CMD_AHRS_HELPER (#56) – send or request attitude of the IMU sensor.
	CMD_GYRO_CORRECTION (#75) – correct the gyroscope sensor's zero bias manually

	Responses
	CMD_AHRS_HELPER (#56) – current attitude in vector form.
	AHRS_DEBUG_INFO - information about the AHRS state
	CMD_EXT_IMU_DEBUG_INFO (#106) – debug information for the external IMU sensor

	Controlling gimbal movements
	Requests
	CMD_CONTROL (#67) – controls gimbal movement
	CMD_CONTROL_EXT (#121) – controls gimbal movement, extended version
	CMD_CONTROL_CONFIG (#90) – configure the handling of CMD_CONTROL command
	CMD_API_VIRT_CH_CONTROL (#45) – update a state of 32 virtual channels.
	CMD_API_VIRT_CH_HIGH_RES (#116) – update a state of 32 virtual channels

	Miscellaneous commands
	Requests
	CMD_RESET (#114) – reset device
	CMD_BOOT_MODE_3 (#51) – enter bootloader mode to upload firmware
	CMD_TRIGGER_PIN (#84) - trigger output pin
	CMD_MOTORS_ON (#77) - switch motors ON
	CMD_MOTORS_OFF (#109) - switch motors OFF
	CMD_EXECUTE_MENU (#69) - execute menu command
	CMD_AUTO_PID (#35) – Starts automatic PID calibration
	CMD_AUTO_PID2 (#108) – Starts automatic PID calibration ver.2
	CMD_SERVO_OUT (#36) – Output PWM signal on the servo1..4 pins
	CMD_I2C_WRITE_REG_BUF (#39) – writes data to any device connected to I2C line
	CMD_I2C_READ_REG_BUF (#40) – requests reading from any device connected to I2C line
	CMD_RUN_SCRIPT (#57) – start or stop user-written script
	CMD_BEEP_SOUND (#89) – play melody by motors or emit standard beep sound
	CMD_SIGN_MESSAGE (#50) – sign message by secret keys
	CMD_EXT_IMU_CMD (#110) – forward message from the controller to the connected external IMU sensor
	CMD_EXT_SENS_CMD (#150) – forward message to the GPS_IMU sensor
	CMD_CAN_DEVICE_SCAN (#96) – scan for the connected CAN devices

	Responses
	CMD_CONFIRM (#67) – confirmation of previous command or finished calibration
	CMD_ERROR (#255) – error executing previous command
	CMD_I2C_READ_REG_BUF (#40) – result of reading from I2C device
	CMD_AUTO_PID (#35) – progress of PID auto tuning
	CMD_RESET (#114) – notification on device reset
	MOTOR4_CONTROL - provides data for the external controller of the 4th axis motor
	CMD_EVENT (#102) – sent when event is triggered
	CMD_SIGN_MESSAGE (#50) – result of message signing
	CMD_EXT_IMU_CMD (#110) – forwarded message received from the connected external IMU sensor
	CMD_EXT_SENS_CMD (#150) – forward message from the GPS_IMU sensor
	CMD_CAN_DEVICE_SCAN (#96) – result of scanning all connected CAN devices, with the ID assigned to them.

	EEPROM and internal file system
	Requests
	CMD_READ_FILE (#53) – read file from internal filesystem
	CMD_WRITE_FILE (#54) – write file to internal filesystem
	CMD_FS_CLEAR_ALL (#55) – delete all files from internal filesystem
	CMD_EEPROM_WRITE (#47) – writes a block of data to EEPROM to specified address
	CMD_READ_EXTERNAL_DATA (#42) – receive user data, stored in the EEPROM
	CMD_EEPROM_READ (#48) – request a reading of block of data from EEPROM at the specified address and size.
	CMD_WRITE_EXTERNAL_DATA (#41) – stores any user data to the dedicated area in the EEPROM
	CMD_READ_EXTERNAL_DATA (#42) – request user data, stored in the EEPROM

	Responses
	CMD_READ_FILE (#53) – result of reading file from internal filesystem
	CMD_EEPROM_READ (#48) – receive a portion of data read from EEPROM at the specified address.

	Appendix
	Command ID definitions
	Appendix A: Examples and libraries
	CRC16 reference implementation in C

	Appendix B: Run-time parameters definition (adjustable variables)
	Appendix C: Providing external reference attitude/heading information from UAV
	Using high-grade IMU for a correction
	Notes on data rates and how to interrupt the correction

	Appendix D: Coordinate system conversions
	Rotation matrix
	Quaternions
	Euler angles

	Appendix E: “Emergency stop” error codes

